Câu hỏi:

20/09/2025 13 Lưu

Cho hình thang cân ABCD có: \[\widehat A = 80^\circ .\] Khi đó:

A. \(\widehat B = 50^\circ .\) 

B. \(\widehat B = 60^\circ .\) 
C. \(\widehat B = 70^\circ .\)    
D. \(\widehat B = 80^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho hình thang cân  có: \[\widehat A = 80^\circ .\] Khi đó:  (ảnh 1)

\(ABCD\;\left( {AB\,{\rm{//}}\,CD} \right)\)

Vì tứ giác \(ABCD\) là hình thang cân và \(AB\,{\rm{//}}\,CD\) nên \(\widehat B = \widehat A = 80^\circ .\) Vậy \(\widehat B = 80^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ giác \(ABCD\) có \(AB\,{\rm{//}}\,CD,\;AB < CD,\) \(AC = BD\) và \(\widehat {ABC} = 100^\circ .\)  a) Tứ giác \(ABCD\) là hình thang cân.  b) \(\widehat {DAB} = 110^\circ .\) (ảnh 1)

a) Đúng.

Tứ giác \(ABCD\)\(AB\,{\rm{//}}\,CD\) nên tứ giác \(ABCD\) là hình thang.

\(AC = BD\) nên tứ giác \(ABCD\) là hình thang cân.

b) Sai.

Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat {DAB} = \widehat {ABC} = 100^\circ .\) Vậy \(\widehat {DAB} = 100^\circ .\)

c) Đúng.  

Kẻ \(Bd\) là tia đối của tia \(BC.\)\(AB\,{\rm{//}}\,CD\) nên \(\widehat C = \widehat {ABd}\) (hai góc đồng vị).

Mà \(\widehat {ABd} + \widehat {ABC} = 180^\circ \) (hai góc kề bù) nên \(\widehat {ABC} + \widehat {BCD} = 180^\circ .\) Vậy \(\widehat {ABC} + \widehat C = 180^\circ .\)

d) Đúng.

Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat D = \widehat C.\)

Ta có: \(\widehat {ABC} + \widehat C = 180^\circ \) nên \(100^\circ + \widehat C = 180^\circ \) nên \(\widehat C = 80^\circ .\) Vậy \(\widehat D = 80^\circ .\)

Lời giải

Cho hình thang \(ABCD\;\left( {AB\,{\rm{//}}\,CD} \right)\) có \(\widehat {BAC} = \widehat {ABD}.\) Gọi \(O\) là giao điểm của \(AC\) và \(BD.\)  a) \(OA = OB.\)          b) Tam giác \(OCD\) cân tại \(C.\) (ảnh 1)

a) Đúng.

Tam giác \(AOB\) có: \(\widehat {BAO} = \widehat {ABO}\) nên tam giác \(AOB\) cân tại \(O.\) Do đó, \(OA = OB.\)

b) Sai.

Vì \(AB\,{\rm{//}}\,CD\) nên \(\widehat {BAO} = \widehat {OCD}\) (hai góc so le trong), \(\widehat {ABO} = \widehat {ODC}\) (hai góc so le trong).

Mà \(\widehat {BAO} = \widehat {ABO}\;\left( {gt} \right)\) nên \(\widehat {ODC} = \widehat {OCD}.\) Do đó, tam giác \(OCD\) cân tại \(O.\)

c) Sai.

Vì tam giác \(OCD\) cân tại \(O\) nên \(OC = OD.\)

Mà \(OA = OB\;\left( {cmt} \right)\) nên \(OA + OC = OB + OD\) hay \(AC = BD.\)

d) Đúng.

Hình thang \(ABCD\) có: \(AC = BD\) nên \(ABCD\) là hình thang cân. Do đó, \(AD = BC.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {ACD} = 30^\circ .\)  

B. \(\widehat {ACD} = 40^\circ .\) 
C. \(\widehat {ACD} = 50^\circ .\) 
D. \(\widehat {ACD} = 60^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP