Phần III. Trắc nghiệm trả lời ngắn
(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)
Cho hình thang cân \(ABCD\;\left( {AB\,{\rm{//}}\,CD} \right)\) có \(\widehat A = 2\widehat C.\) Số đo góc \(C\) bằng bao nhiêu độ?
Phần III. Trắc nghiệm trả lời ngắn
(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)
Cho hình thang cân \(ABCD\;\left( {AB\,{\rm{//}}\,CD} \right)\) có \(\widehat A = 2\widehat C.\) Số đo góc \(C\) bằng bao nhiêu độ?
Quảng cáo
Trả lời:
Đáp án: \(60\)
Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat A = \widehat B,\;\widehat C = \widehat D.\)
Lại có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác)
\(\widehat A + \widehat A + \widehat C + \widehat C = 360^\circ \)
\(2\left( {\widehat A + \widehat C} \right) = 360^\circ \)
\(\widehat A + \widehat C = 180^\circ .\)
Mà \(\widehat A = 2\widehat C\) nên \(\widehat C + 2\widehat C = 180^\circ .\) Vậy \(\widehat C = 60^\circ .\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Tứ giác có hai cạnh đối song song là hình thang.
B. Tứ giác có hai cạnh đối bằng nhau là hình thang.
C. Tứ giác có hai cạnh kề bằng nhau là hình thang.
Lời giải
Đáp án đúng là: A
Tứ giác có hai cạnh đối song song là hình thang.
Lời giải
a) Sai.
Vì tam giác \(ABC\) cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB},\;AC = AB.\)
Vì \(BD\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}\widehat {ABC}.\)
Vì \(CE\) là tia phân giác của \(\widehat {ACB}\) nên \(\widehat {{C_1}} = \widehat {{C_2}} = \frac{1}{2}\widehat {ACB}.\)
Do đó, \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}\widehat {ABC} = \frac{1}{2}\widehat {ACB} = \widehat {{C_1}} = \widehat {{C_2}}\) hay \(\widehat {{B_1}} = \widehat {{B_2}} = \widehat {{C_1}} = \widehat {{C_2}}.\)
Tam giác \(ADB\) và tam giác \(AEC\) có: \(\widehat {{B_1}} = \widehat {{C_1}},\;AB = AC,\;\widehat A\) chung. Nên \(\Delta ADB = \Delta AEC\;\left( {g - c - g} \right).\)
b) Đúng.
Vì \(\Delta ADB = \Delta AEC\;\left( {cmt} \right)\) nên \(AD = AE.\) Do đó, tam giác \(ADE\) cân tại \(A\) nên \(\widehat {ADE} = \widehat {AED}.\)
Mà \(\widehat {ADE} + \widehat {AED} + \widehat A = 180^\circ \) suy ra \(\widehat {AED} + \widehat {AED} + \widehat A = 180^\circ \) nên \(\widehat {AED} = \frac{{180^\circ - \widehat A}}{2}\;\left( 1 \right).\)
\(\Delta ABC\) có: \(\widehat {ABC} + \widehat {ACB} + \widehat A = 180^\circ \) nên \(\widehat {ABC} + \widehat {ABC} + \widehat A = 180^\circ .\)Do đó, \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\;\left( 2 \right).\)
Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(\widehat {AED} = \widehat {ABC}.\) Mà hai góc này ở vị trí đồng vị nên \(DE\;{\rm{//}}\;BC.\)
c) Đúng.
Tứ giác \(BEDC\) có: \(DE\;{\rm{//}}\;BC\) nên tứ giác \(BEDC\) là hình thang. Mà \(\widehat {ABC} = \widehat {ACB}\;\left( {cmt} \right)\) nên tứ giác \(BEDC\) là hình thang cân.
d) Sai.
Vì tứ giác \(BEDC\) là hình thang cân nên \(\widehat {EBC} = \widehat {DCB} = 55^\circ .\) Do đó, \(\widehat {AED} = \widehat {EBC} = 55^\circ .\)
Ta có: \(\widehat {BED} = 180^\circ - \widehat {AED} = 180^\circ - 55^\circ = 125^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\widehat B = 50^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Tứ giác \(MNOP\) và tứ giác \(ABCD.\)
B. Tứ giác \(EHGF\) và tứ giác \(ABCD.\)
C. Tứ giác \(EHGF,\) tứ giác \(ABCD\) và tứ giác \(MNOP.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
