Tính diện tích hình bình hành \(ABCD\) có đường chéo \(AC\) vuông góc với cạnh \(AD.\) Biết rằng \(AC = 12\;{\rm{cm}}{\rm{,}}\;AD = 9\;{\rm{cm}}{\rm{.}}\) (Đơn vị: \({\rm{c}}{{\rm{m}}^2}\)).
Quảng cáo
Trả lời:

Đáp án: \(108\)

Vì tứ giác \(ABCD\) là hình bình hành nên \(AD\,{\rm{//}}\,BC,\;BC = AD = 9\;{\rm{cm}}{\rm{.}}\)
Vì \(AD\,{\rm{//}}\,BC,\;AD \bot AC\) nên \(BC \bot AC.\)
Diện tích tam giác \(ABC\) vuông tại \(C\) là: \({S_{\Delta ABC}} = \frac{1}{2}AC \cdot CB = \frac{1}{2} \cdot 12 \cdot 9 = 54\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích \(\Delta ADC\) vuông tại \(A\) nên: \({S_{\Delta ADC}} = \frac{1}{2}AC \cdot AD = \frac{1}{2} \cdot 12 \cdot 9 = 54\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích hình bình hành \(ABCD\) là: \({S_{ABCD}} = {S_{\Delta ABC}} + {S_{\Delta ADC}} = 54 + 54 = 108\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích hình bình hành \(ABCD\) là \(108\;{\rm{c}}{{\rm{m}}^2}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(18\;{\rm{cm}}.\)
Lời giải
Đáp án đúng là: A
Vì mắt lưới có dạng hình tứ giác có các cạnh đối song song nên mắt lưới có dạng là hình bình hành.
Do đó, các cạnh đối của của một mắt lưới đó bằng nhau.
Chu vi của một mắt lưới là: \(2 \cdot 9 = 18\;\left( {{\rm{cm}}} \right).\)
Vậy chu vi của một mắt lưới là \(18\;{\rm{cm}}.\)
Lời giải
a) Đúng.
Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác).
Do đó, \[\widehat D = 360^\circ - \widehat A - \widehat B - \widehat C = 360^\circ - 95^\circ - 85^\circ - 95^\circ = 85^\circ .\] Vậy \(\widehat D = 60^\circ .\)
b) Đúng.
Tứ giác \(ABCD\) có: \(\widehat A = \widehat C\left( { = 95^\circ } \right),\;\widehat B = \widehat D\left( { = 85^\circ } \right)\) nên tứ giác \(ABCD\) là hình bình hành.
c) Đúng.
Vì tứ giác \(ABCD\) là hình bình hành, mà \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\) nên \(O\) là trung điểm của \(BD.\)
d) Sai.
Vì tứ giác \(ABCD\) là hình bình hành nên \(AB = CD,\;AD = BC.\)
Theo giả thiết \(CD = \frac{3}{4}BC\) nên \(AB = \frac{3}{4}AD.\)
Lại có: \(AD - AB = 2\;{\rm{cm}}\) nên \(AD - \frac{3}{4}AD = 2.\) Suy ra \(\frac{1}{4}AD = 2.\) Vậy \(AD = 8\;{\rm{cm}}{\rm{.}}\)
Câu 3
A. Hình \(1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.