Câu hỏi:

20/09/2025 120 Lưu

Tính diện tích hình bình hành \(ABCD\) có đường chéo \(AC\) vuông góc với cạnh \(AD.\) Biết rằng \(AC = 12\;{\rm{cm}}{\rm{,}}\;AD = 9\;{\rm{cm}}{\rm{.}}\) (Đơn vị: \({\rm{c}}{{\rm{m}}^2}\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(108\)

Tính diện tích hình bình hành \(ABCD\) có đường chéo \(AC\) vuông góc với cạnh \(AD.\) Biết rằng \(AC = 12\;{\rm{cm}}{\rm{,}}\;AD = 9\;{\rm{cm}}{\rm{.}}\) (Đơn vị: \({\rm{c}}{{\rm{m}}^2}\)). (ảnh 1)

Vì tứ giác \(ABCD\) là hình bình hành nên \(AD\,{\rm{//}}\,BC,\;BC = AD = 9\;{\rm{cm}}{\rm{.}}\)

Vì \(AD\,{\rm{//}}\,BC,\;AD \bot AC\) nên \(BC \bot AC.\)

Diện tích tam giác \(ABC\) vuông tại \(C\) là: \({S_{\Delta ABC}} = \frac{1}{2}AC \cdot CB = \frac{1}{2} \cdot 12 \cdot 9 = 54\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Diện tích \(\Delta ADC\) vuông tại \(A\) nên: \({S_{\Delta ADC}} = \frac{1}{2}AC \cdot AD = \frac{1}{2} \cdot 12 \cdot 9 = 54\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Diện tích hình bình hành \(ABCD\) là: \({S_{ABCD}} = {S_{\Delta ABC}} + {S_{\Delta ADC}} = 54 + 54 = 108\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích hình bình hành \(ABCD\) là \(108\;{\rm{c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Vì mắt lưới có dạng hình tứ giác có các cạnh đối song song nên mắt lưới có dạng là hình bình hành.

Do đó, các cạnh đối của của một mắt lưới đó bằng nhau.

Chu vi của một mắt lưới là: \(2 \cdot 9 = 18\;\left( {{\rm{cm}}} \right).\)

Vậy chu vi của một mắt lưới là \(18\;{\rm{cm}}.\)

Lời giải

Cho hình bình hành \(ABCD.\) Gọi \(H,\;K\) lần lượt là hình chiếu vuông góc của \(A,\;C\) trên \(BD.\)           a) \(\widehat {ADB} = \widehat {DBC}.\)           b) \(\Delta DHA = \Delta BKC.\) (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình bình hành nên \(AB = CD,\;AD = BC,\;AD\;{\rm{//}}\;BC.\)

Vì \(AD\;{\rm{//}}\;BC\) nên \(\widehat {ADB} = \widehat {DBC}\) (hai góc so le trong).

b) Đúng.

Vì \(H,\;K\) lần lượt là hình chiếu vuông góc của \(A,\;C\) trên \(BD\) nên \(AH \bot BD,\;CK \bot BD.\)

Do đó, \(\widehat {DHA} = \widehat {BKC} = 90^\circ .\)

Tam giác \(DHA\) và tam giác \(BKC\) có: \(\widehat {DHA} = \widehat {BKC} = 90^\circ ,\;DA = BC\;\left( {cmt} \right),\;\widehat {ADB} = \widehat {DBC}\;\left( {cmt} \right).\)

Do đó, \(\Delta DHA = \Delta BKC\;\left( {ch - gn} \right).\)

c) Đúng.

Vì \(\Delta DHA = \Delta BKC\;\left( {cmt} \right)\) nên \(AH = KC.\)

Tứ giác \(AKCH\) có: \(AH = KC,\;AH\;{\rm{//}}\;KC\) (cùng vuông góc với \(BD\)) nên tứ giác \(AKCH\) là hình bình hành.

d) Sai.

Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat {DAB} = \widehat {DCB}.\)

Vì \(\Delta DHA = \Delta BKC\;\left( {cmt} \right)\) nên \(\widehat {DAH} = \widehat {KCB}\) (hai góc tương ứng).

Vì tứ giác \(AKCH\) là hình bình hành nên \(\widehat {HAK} = \widehat {HCK}.\)

Do đó, \(\widehat {DAB} - \widehat {DAH} - \widehat {HAK} = \widehat {DCB} - \widehat {KCB} - \widehat {HCK},\) suy ra \(\widehat {KAB} = \widehat {HCD}.\)

Câu 3

A. \(OA = 3\;{\rm{cm}}.\)     
B. \(OA = 4\;{\rm{cm}}.\)     
C. \(OA = 2,5\;{\rm{cm}}.\)  
D. \(OA = 1,5\;{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP