Câu hỏi:

19/09/2025 11 Lưu

Cho tứ giác \(ABCD\) có \(AB = CD,\;AB\;{\rm{//}}\;CD,\;AB = 2AD.\) Gọi \(E,\;F\) lần lượt là trung điểm của \(AB,\;DC.\)

         a) Tứ giác \(ABCD\) là hình thoi.

         b) \(AE = AD.\)

         c) Tứ giác \(AEFD\) là hình thoi.

         d) Diện tích tứ giác \(ABCD\) gấp hai lần diện tích tứ giác \(AEFD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ giác \(ABCD\) có \(AB = CD,\;AB\;{\rm{//}}\;CD,\;AB = 2AD.\) Gọi \(E,\;F\) lần lượt là trung điểm của \(AB,\;DC.\a) Tứ giác \(ABCD\) là hình thoib) \(AE = AD.\) (ảnh 1)

a) Sai.

Tứ giác \(ABCD\) có: \(AB = CD,\;AB\;{\rm{//}}\;CD.\) Do đó, tứ giác \(ABCD\) là hình bình hành.

b) Đúng.

Vì \(E\) là trung điểm của \(AB\) nên \(AB = 2AE.\) Mà \(AB = 2AD\;\left( {gt} \right)\) nên \(AE = AD.\)

c) Đúng.

Vì \(F\) là trung điểm của \(CD\) nên \(CD = 2DF.\) Mà \(AB = CD\;\left( {gt} \right),\;AB = 2AE\;\left( {cmt} \right)\) nên \(AE = DF.\)

Tứ giác \(AEFD\) có: \(AE = DF,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEFD\) là hình bình hành.

Mà \(AE = AD\;\left( {cmt} \right)\) nên tứ giác \(AEFD\) là hình thoi.

d) Đúng.

Ta chứng minh được \(EBCF\) là hình thoi.

Nhận thấy, hai hình thoi \(EBCF\) và \(AEFD\) có độ dài các cạnh bằng nhau.

Do đó, \({S_{EBCF}} = {S_{AEFD}}\).

Lại có, \({S_{EBCF}} + {S_{AEFD}} = {S_{ABCD}}\) hay \(2{S_{EBCF}} = {S_{ABCD}}\) nên \({S_{AEFD}} = \frac{1}{2}{S_{ABCD}}\).

Vậy diện tích tứ giác \(ABCD\) gấp hai lần diện tích tứ giác \(AEFD\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(30\)

Cho tam giác \(ABD\) cân tại \(A.\) Gọi \(M\) là trung điểm của \(BD.\) Gọi \(C\) là điểm đối xứng với \(A\) qua \(M.\) Biết rằng chu vi tam giác \(BCD\) bằng \(30\;{\rm{cm}}{\rm{.}}\) Tính chu vi tam giác \(BAD.\) (ảnh 1)

Vì tam giác \(ABD\) cân tại \(A\) nên \(AM\) là đường trung tuyến đồng thời là đường cao của tam giác đó.

Suy ra: \(AM \bot BD\) tại \(M\) hay \(AC \bot BD\) tại \(M.\)

Vì \(C\) là điểm đối xứng với \(A\) qua \(M\) nên \(M\) là trung điểm của \(AC.\)

Tứ giác \(ABCD\) có: \(M\) là giao điểm của hai đường chéo \(AC,\;BD.\) \(M\) vừa là trung điểm của \(BD,\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.

Lại có: \(AC \bot BD\) tại \(M\) nên hình bình hành \(ABCD\) là hình thoi. Do đó, \(AB = BC = CD = DA.\)

Vì rằng chu vi tam giác \(BCD\) bằng \(30\;{\rm{cm}}\) nên \(BC + BD + CD = 30,\) suy ra \(AB + BD + AD = 30.\)

Vậy chu vi tam giác \(BAD\) bằng \(30\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án đúng là: A

Hình thoi là hình 1

Câu 3

A. \(\widehat B = \widehat D = 80^\circ ,\widehat A = \widehat C = 100^\circ .\)          

B. \(\widehat B = \widehat D = 120^\circ ,\widehat A = \widehat C = 60^\circ .\)

C. \(\widehat B = \widehat C = 60^\circ ,\widehat A = \widehat D = 120^\circ .\)  
D. \(\widehat B = \widehat D = 60^\circ ,\widehat A = \widehat C = 120^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Chúng vuông góc với nhau.

B. Chúng bằng nhau.

C. Chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường.

D. Chúng vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(AB = BC = CD = DA.\)

B. \(AB \bot CD.\)

C. \(BC\parallel AD.\)

D. \(O\) là trung điểm của \(AC\) và \(BD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP