Cho tam giác \(ABD\) cân tại \(A.\) Gọi \(M\) là trung điểm của \(BD.\) Gọi \(C\) là điểm đối xứng với \(A\) qua \(M.\) Biết rằng chu vi tam giác \(BCD\) bằng \(30\;{\rm{cm}}{\rm{.}}\) Tính chu vi tam giác \(BAD.\) (Đơn vị: \({\rm{cm}}\)).
Cho tam giác \(ABD\) cân tại \(A.\) Gọi \(M\) là trung điểm của \(BD.\) Gọi \(C\) là điểm đối xứng với \(A\) qua \(M.\) Biết rằng chu vi tam giác \(BCD\) bằng \(30\;{\rm{cm}}{\rm{.}}\) Tính chu vi tam giác \(BAD.\) (Đơn vị: \({\rm{cm}}\)).
Quảng cáo
Trả lời:

Đáp án: \(30\)

Vì tam giác \(ABD\) cân tại \(A\) nên \(AM\) là đường trung tuyến đồng thời là đường cao của tam giác đó.
Suy ra: \(AM \bot BD\) tại \(M\) hay \(AC \bot BD\) tại \(M.\)
Vì \(C\) là điểm đối xứng với \(A\) qua \(M\) nên \(M\) là trung điểm của \(AC.\)
Tứ giác \(ABCD\) có: \(M\) là giao điểm của hai đường chéo \(AC,\;BD.\) \(M\) vừa là trung điểm của \(BD,\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.
Lại có: \(AC \bot BD\) tại \(M\) nên hình bình hành \(ABCD\) là hình thoi. Do đó, \(AB = BC = CD = DA.\)
Vì rằng chu vi tam giác \(BCD\) bằng \(30\;{\rm{cm}}\) nên \(BC + BD + CD = 30,\) suy ra \(AB + BD + AD = 30.\)
Vậy chu vi tam giác \(BAD\) bằng \(30\;{\rm{cm}}{\rm{.}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hình \(1.\)
Câu 2
A. \(\widehat B = \widehat D = 80^\circ ,\widehat A = \widehat C = 100^\circ .\)
B. \(\widehat B = \widehat D = 120^\circ ,\widehat A = \widehat C = 60^\circ .\)
Lời giải
Đáp án đúng là: D
Do đường cao \(AH\) kẻ từ đỉnh \(A\) đến cạnh \(CD\) chia cạnh đó thành hai đoạn bằng nhau nên tam giác \(ADC\) cân tại \(A\).
Mà ta lại có \(AD = DC\) nên \(\Delta ADC\) là tam giác đều.
Do đó, \(\widehat {ADC} = 60^\circ .\)
Vì \(ABCD\) là hình thoi nên \(\widehat {ADC} = \widehat {ABC} = 60^\circ \) và \(\widehat {CAD} = \widehat {BCD} = 180^\circ - 60^\circ = 120^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Chúng vuông góc với nhau.
B. Chúng bằng nhau.
C. Chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(AB = BC = CD = DA.\)
B. \(AB \bot CD.\)
C. \(BC\parallel AD.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.