Cho tam giác \(ABO\) vuông tại \(O.\) Trên tia đối của tia \(OB\) lấy điểm \(D\) sao cho \(OB = OD.\) Lấy điểm \(C\) đối xứng với điểm \(A\) qua \(O.\) Biết rằng chu vi tứ giác \(ABCD\) bằng \[40\;{\rm{cm}}{\rm{.}}\]
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AB = 8\;{\rm{cm}}.\)
c) \(\widehat {DAB} = 3\widehat {ACB}.\)
d) Điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)
Cho tam giác \(ABO\) vuông tại \(O.\) Trên tia đối của tia \(OB\) lấy điểm \(D\) sao cho \(OB = OD.\) Lấy điểm \(C\) đối xứng với điểm \(A\) qua \(O.\) Biết rằng chu vi tứ giác \(ABCD\) bằng \[40\;{\rm{cm}}{\rm{.}}\]
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AB = 8\;{\rm{cm}}.\)
c) \(\widehat {DAB} = 3\widehat {ACB}.\)
d) Điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)
Quảng cáo
Trả lời:

![Cho tam giác \(ABO\) vuông tại \(O.\) Trên tia đối của tia \(OB\) lấy điểm \(D\) sao cho \(OB = OD.\) Lấy điểm \(C\) đối xứng với điểm \(A\) qua \(O.\) Biết rằng chu vi tứ giác \(ABCD\) bằng \[40\;{\rm{cm}}{\rm{.}}\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/blobid10-1758244511.png)
a) Đúng.
Vì tam giác \(ABO\) vuông tại \(O\) nên \(AO \bot BO\) tại \(O\) hay \(AC \bot BD\) tại \(O.\)
Vì \(C\) đối xứng với điểm \(A\) qua \(O\) nên \(O\) là trung điểm của \(AC.\)
Tứ giác \(ABCD\) có: \(O\) là giao điểm của \(AC,\;BD.\) Mà \(O\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.
Lại có: \(AC \bot BD\) tại \(O\) nên tứ giác \(ABCD\) là hình thoi.
b) Sai.
Vì chu vi hình thoi \(ABCD\) bằng \[40\;{\rm{cm}}\] nên \(4AB = 40\) suy ra \(AB = 10\;{\rm{cm}}.\) Vậy \(AB = 10\;{\rm{cm}}.\)
c) Sai.
Vì tứ giác \(ABCD\) là hình thoi nên \(AB = BC.\) Do đó tam giác \(ABC\) cân tại \(B.\)
Do đó, \(\widehat {ACB} = \widehat {CAB}.\)
Vì tứ giác \(ABCD\) là hình thoi nên \(AC\) là tia phân giác của \(\widehat {DAB}.\) Do đó, \(\widehat {DAB} = 2\widehat {CAB}.\)
Vậy \(\widehat {DAB} = 2\widehat {ACB}.\)
d) Đúng.
Nếu \(\widehat {DAB} = 120^\circ \) thì:
Vì tứ giác \(ABCD\) là hình thoi nên \(\widehat {BAD} = \widehat {DCB} = 120^\circ ,\;\widehat {ADC} = \widehat {ABC}.\)
Lại có: \(\widehat {BAD} + \widehat {DCB} + \widehat {ADC} + \widehat {ABC} = 360^\circ \)
\(120^\circ + 120^\circ + \widehat {ABC} + \widehat {ABC} = 360^\circ \)
\(2\widehat {ABC} = 120^\circ \)
\(\widehat {ABC} = 60^\circ .\)
Tam giác \(ABC\) cân tại \(B\) có \(\widehat {ABC} = 60^\circ \) nên tam giác \(ABC\) đều.
Vậy điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(30\)

Vì tam giác \(ABD\) cân tại \(A\) nên \(AM\) là đường trung tuyến đồng thời là đường cao của tam giác đó.
Suy ra: \(AM \bot BD\) tại \(M\) hay \(AC \bot BD\) tại \(M.\)
Vì \(C\) là điểm đối xứng với \(A\) qua \(M\) nên \(M\) là trung điểm của \(AC.\)
Tứ giác \(ABCD\) có: \(M\) là giao điểm của hai đường chéo \(AC,\;BD.\) \(M\) vừa là trung điểm của \(BD,\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.
Lại có: \(AC \bot BD\) tại \(M\) nên hình bình hành \(ABCD\) là hình thoi. Do đó, \(AB = BC = CD = DA.\)
Vì rằng chu vi tam giác \(BCD\) bằng \(30\;{\rm{cm}}\) nên \(BC + BD + CD = 30,\) suy ra \(AB + BD + AD = 30.\)
Vậy chu vi tam giác \(BAD\) bằng \(30\;{\rm{cm}}{\rm{.}}\)
Câu 2
A. Hình \(1.\)
Câu 3
A. \(\widehat B = \widehat D = 80^\circ ,\widehat A = \widehat C = 100^\circ .\)
B. \(\widehat B = \widehat D = 120^\circ ,\widehat A = \widehat C = 60^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Chúng vuông góc với nhau.
B. Chúng bằng nhau.
C. Chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(AB = BC = CD = DA.\)
B. \(AB \bot CD.\)
C. \(BC\parallel AD.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.