CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho tứ giác \(ABCD\), đường cao \(AH.\) Gọi \(I\) là trung điểm của \(AC\), \(E\) là điểm đối xứng với  \(H\) qua \(I.\) Tứ giác \(AECH\) là hình gì? (ảnh 1)

Nhận thấy, tứ giác \(AECH\) có hai đường chéo \(AC,EH\) cắt nhau tại \(I\) cũng chính là trung điểm của mỗi đường. Do đó, tứ giác \(AECH\) là hình bình hành.

Mà \(AECH\) có \(\widehat H = 90^\circ \), do đó \(AECH\) là hình chữ nhật.

Lời giải

a) Đúng.

Tứ giác \(ABCD\) có: Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(Q.\) Mà \(Q\) vừa là trung điểm của \(AC\) vừa là trung điểm của \(BD\) nên tứ giác \(ABCD\) là hình bình hành.

Lại có: \(AC \bot BD\) tại \(Q\) nên hình bình hành \(ABCD\) là hình thoi.

b) Đúng.

Vì tứ giác \(ABCD\) là hình thoi nên \(BC = AB = 4\;{\rm{cm}}{\rm{.}}\) Vậy \(BC = 4\;{\rm{cm}}{\rm{.}}\)

c) Sai.

Vì \(ABCD\) là hình thoi nên \(AC\) là tia phân giác của \(\widehat {BAD}.\) Do đó, \(\widehat {QAD} = \frac{1}{2}\widehat {BAD} = \frac{1}{2} \cdot 130^\circ  = 65^\circ .\)

Tam giác \(QAD\) vuông tại \(Q\) nên \(\widehat {QAD} + \widehat {QDA} = 90^\circ .\) Do đó, \(\widehat {QDA} = 90^\circ  - \widehat {QAD} = 90^\circ  - 65^\circ  = 25^\circ .\)

Vậy \(\widehat {ADB} = 25^\circ .\)

d) Đúng.

Vì tứ giác \(ABCD\) là hình thoi nên \(CA\) là tia phân giác của \(\widehat {BCD}.\)

Để hình thoi \(ABCD\) là hình vuông thì \(\widehat {BCD} = 90^\circ .\) Khi đó, \(\widehat {ACD} = \frac{1}{2}\widehat {BCD} = \frac{1}{2} \cdot 90^\circ  = 45^\circ .\)

Vậy để tứ giác \(ABCD\) là hình vuông thì cần thêm điều kiện \(\widehat {ACD} = 45^\circ .\)

Câu 3

A. Hình chữ nhật.                  

B. Hình vuông.             
C. Hình bình hành.       
D. Hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP