Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))
Cho tứ giác \(ABCD\) như hình vẽ:
Biết rằng \(AB = 4\;{\rm{cm}}{\rm{,}}\;\widehat {BAD} = 130^\circ .\)
a) Tứ giác \(ABCD\) là hình thoi.
b)\(BC = 4\;{\rm{cm}}{\rm{.}}\)
c) \(\widehat {ADB} = 40^\circ .\)
d) Để tứ giác \(ABCD\) là hình vuông thì cần thêm điều kiện \(\widehat {ACD} = 45^\circ .\)
Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))
Cho tứ giác \(ABCD\) như hình vẽ:

Biết rằng \(AB = 4\;{\rm{cm}}{\rm{,}}\;\widehat {BAD} = 130^\circ .\)
a) Tứ giác \(ABCD\) là hình thoi.
b)\(BC = 4\;{\rm{cm}}{\rm{.}}\)
c) \(\widehat {ADB} = 40^\circ .\)
d) Để tứ giác \(ABCD\) là hình vuông thì cần thêm điều kiện \(\widehat {ACD} = 45^\circ .\)
Quảng cáo
Trả lời:

a) Đúng.
Tứ giác \(ABCD\) có: Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(Q.\) Mà \(Q\) vừa là trung điểm của \(AC\) vừa là trung điểm của \(BD\) nên tứ giác \(ABCD\) là hình bình hành.
Lại có: \(AC \bot BD\) tại \(Q\) nên hình bình hành \(ABCD\) là hình thoi.
b) Đúng.
Vì tứ giác \(ABCD\) là hình thoi nên \(BC = AB = 4\;{\rm{cm}}{\rm{.}}\) Vậy \(BC = 4\;{\rm{cm}}{\rm{.}}\)
c) Sai.
Vì \(ABCD\) là hình thoi nên \(AC\) là tia phân giác của \(\widehat {BAD}.\) Do đó, \(\widehat {QAD} = \frac{1}{2}\widehat {BAD} = \frac{1}{2} \cdot 130^\circ = 65^\circ .\)
Tam giác \(QAD\) vuông tại \(Q\) nên \(\widehat {QAD} + \widehat {QDA} = 90^\circ .\) Do đó, \(\widehat {QDA} = 90^\circ - \widehat {QAD} = 90^\circ - 65^\circ = 25^\circ .\)
Vậy \(\widehat {ADB} = 25^\circ .\)
d) Đúng.
Vì tứ giác \(ABCD\) là hình thoi nên \(CA\) là tia phân giác của \(\widehat {BCD}.\)
Để hình thoi \(ABCD\) là hình vuông thì \(\widehat {BCD} = 90^\circ .\) Khi đó, \(\widehat {ACD} = \frac{1}{2}\widehat {BCD} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\)
Vậy để tứ giác \(ABCD\) là hình vuông thì cần thêm điều kiện \(\widehat {ACD} = 45^\circ .\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng.
Vì \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) của tam giác \(ABC\) vuông tại \(A\) nên \(AM = \frac{1}{2}BC,\) mà \(BM = MC = \frac{1}{2}BC\) nên \(AM = BM = MC.\)
b) Đúng.
Vì \(H\) là hình chiếu của \(M\) trên \(AB\) nên \(MH \bot AB\) tại \(H.\)
Vì \(AM = BM\) nên tam giác \(ABM\) cân tại \(M.\) Do đó, \(HM\) vừa là đường cao đồng thời là đường trung tuyến của tam giác \(ABM\) nên \(H\) là trung điểm của \(AB.\)
c) Sai.
Vì \(D\) đối xứng với \(M\) qua \(H\) nên \(H\) là là trung điểm của \(DM.\)
Tứ giác \(AMBD\) có: Hai đường chéo \(AB\) và \(DM\) cắt nhau tại \(H.\) Mà \(H\) vừa là trung điểm của \(AB\) vừa là trung điểm của \(DM\) nên tứ giác \(AMBD\) là hình bình hành.
Mà \(MD \bot AB\) tại \(H\) nên hình bình hành \(AMBD\) là hình thoi.
Do đó, \(AB\) là tia phân giác của \(\widehat {DAM}.\) Suy ra \(\widehat {DAB} = \widehat {BAM}.\)
d) Đúng.
Để hình thoi \(AMBD\) là hình vuông thì \(\widehat {DBM} = 90^\circ .\)
Mà \(BA\) là tia phân giác của \(\widehat {DBM}\) nên \(\widehat {ABC} = \frac{1}{2}\widehat {DBM} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\)
Theo giả thiết, tam giác \(ABC\) vuông tại \(A\) nên tam giác \(ABC\) vuông cân tại \(A.\)
Vậy để tứ giác \(AMBD\) là hình vuông thì tam giác \(ABC\) vuông cân tại \(A.\)
Câu 2
A. Hình chữ nhật.
Lời giải
Đáp án đúng là: A

Nhận thấy, tứ giác \(AECH\) có hai đường chéo \(AC,EH\) cắt nhau tại \(I\) cũng chính là trung điểm của mỗi đường. Do đó, tứ giác \(AECH\) là hình bình hành.
Mà \(AECH\) có \(\widehat H = 90^\circ \), do đó \(AECH\) là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. 4 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.