Cho tam giác \(AOB\) vuông tại \(O\) có \(OC\) là tia phân giác của \(\widehat {AOB}.\) Kẻ \(CK \bot OB\) tại \(K\) và \(CH \bot OA\) tại \(H.\)
a) \(\widehat {HCK} = 90^\circ .\)
b) Tứ giác \(HCKO\) là hình vuông.
c) \(\widehat {OCK} = 40^\circ .\)
d) \(\widehat A = \widehat {KCB}.\)
Cho tam giác \(AOB\) vuông tại \(O\) có \(OC\) là tia phân giác của \(\widehat {AOB}.\) Kẻ \(CK \bot OB\) tại \(K\) và \(CH \bot OA\) tại \(H.\)
a) \(\widehat {HCK} = 90^\circ .\)
b) Tứ giác \(HCKO\) là hình vuông.
c) \(\widehat {OCK} = 40^\circ .\)
d) \(\widehat A = \widehat {KCB}.\)
Quảng cáo
Trả lời:


a) Đúng.
Vì \(CK \bot OB\) tại \(K\) nên \(\widehat {CKO} = 90^\circ .\) Vì \(CH \bot OA\) tại \(H\) nên \(\widehat {CHO} = \widehat {CHA} = 90^\circ .\)
Vì tam giác \(AOB\) vuông tại \(O\) nên \(\widehat {AOB} = 90^\circ \) hay \(\widehat {HOK} = 90^\circ .\)
Tứ giác \(HCKO\) có: \(\widehat {CKO} = \widehat {HOK} = \widehat {CHO} = 90^\circ \) nên tứ giác \(HCKO\) là hình chữ nhật.
Do đó, \(\widehat {HCK} = 90^\circ .\)
b) Đúng.
Hình chữ nhật \(HCKO\) có: \(OC\) là tia phân giác của \(\widehat {HOK}\) nên tứ giác \(HCKO\) là hình vuông.
c) Sai.
Vì tứ giác \(HCKO\) là hình vuông nên \(CO\) là tia phân giác của \(\widehat {HCK}.\)
Suy ra: \(\widehat {OCK} = \frac{1}{2}\widehat {HCK} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\) Vậy \(\widehat {OCK} = 45^\circ .\)
d) Đúng.
Vì tam giác \(AHC\) vuông tại \(H\) nên \(\widehat A + \widehat {HCA} = 90^\circ .\)
Ta có: \(\widehat {HCA} + \widehat {HCK} + \widehat {KCB} = 180^\circ \) nên \(\widehat {KCB} + \widehat {HCA} = 180^\circ - \widehat {HCK} = 180^\circ - 90^\circ = 90^\circ .\)
Do đó, \(\widehat A = \widehat {KCB}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
Tứ giác \(ABCD\) có: Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(Q.\) Mà \(Q\) vừa là trung điểm của \(AC\) vừa là trung điểm của \(BD\) nên tứ giác \(ABCD\) là hình bình hành.
Lại có: \(AC \bot BD\) tại \(Q\) nên hình bình hành \(ABCD\) là hình thoi.
b) Đúng.
Vì tứ giác \(ABCD\) là hình thoi nên \(BC = AB = 4\;{\rm{cm}}{\rm{.}}\) Vậy \(BC = 4\;{\rm{cm}}{\rm{.}}\)
c) Sai.
Vì \(ABCD\) là hình thoi nên \(AC\) là tia phân giác của \(\widehat {BAD}.\) Do đó, \(\widehat {QAD} = \frac{1}{2}\widehat {BAD} = \frac{1}{2} \cdot 130^\circ = 65^\circ .\)
Tam giác \(QAD\) vuông tại \(Q\) nên \(\widehat {QAD} + \widehat {QDA} = 90^\circ .\) Do đó, \(\widehat {QDA} = 90^\circ - \widehat {QAD} = 90^\circ - 65^\circ = 25^\circ .\)
Vậy \(\widehat {ADB} = 25^\circ .\)
d) Đúng.
Vì tứ giác \(ABCD\) là hình thoi nên \(CA\) là tia phân giác của \(\widehat {BCD}.\)
Để hình thoi \(ABCD\) là hình vuông thì \(\widehat {BCD} = 90^\circ .\) Khi đó, \(\widehat {ACD} = \frac{1}{2}\widehat {BCD} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\)
Vậy để tứ giác \(ABCD\) là hình vuông thì cần thêm điều kiện \(\widehat {ACD} = 45^\circ .\)
Câu 2
A. Hình chữ nhật.
Lời giải
Đáp án đúng là: B

Vì có \(AB = BC = CD = DA\) và \(AE = BF = CG = DH\) nên
ta chứng minh được \(\Delta AEH = \Delta BFE = \Delta CGF = \Delta DHG\).
Suy ra \(HE = EF = FG = GH\) nên \(EFGH\) là hình thoi.
Mà \(\widehat {FEH} = 90^\circ \) nên \(EFGH\) là hình vuông.
Câu 3
A. \(AC = BD.\)
B. \(AC,{\rm{ }}BD\) giao nhau tại trung điểm mỗi đường.
C. \(AC \bot BD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\widehat {ABC} = 80^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.