Câu hỏi:

20/09/2025 11 Lưu

Cho hình vuông \(ABCD.\) Trên cạnh \(AB,BC,CD,DA\) lần lượt lấy các điểm \(E,F,G,H\) sao cho \(AE = BF = CG = DH\).

         a) \(AH = BE = CF = DG.\)

         b) \(\Delta AEH = \Delta BEF\).

         c) \(\widehat {FEH} < 90^\circ \).

         d) \(EFGH\) là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình vuông \(ABCD.\) Trên cạnh \(AB,BC,CD,DA\) lần lượt lấy các điểm \(E,F,G,H\) sao cho \(AE = BF = CG = DH\). a) \(AH = BE = CF = DG.\)   b) \(\Delta AEH = \Delta BEF\). (ảnh 1)

a) Đúng.

Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA\).

Mà \(AE = BF = CG = DH\) nên \(AH = BE = CF = DG.\)

b) Sai.

Xét \(\Delta AEH\) và \(\Delta BEF\), có:

\(AE = BF\) (gt)

\(AH = BE\) (cmt)

Do đó, \(\Delta AEH = \Delta BFE\) (2cgv).

c) Sai.

Vì \(\Delta AEH = \Delta BFE\) (cmt) nên \[\widehat {AEH} = \widehat {BFE}\] (hai góc tương ứng).

Trong tam giác \(\Delta BFE\) vuông tại \(B\) có: \[\widehat {FEB} + \widehat {BFE} = 90^\circ \] (phụ nhau).

Mà \[\widehat {AEH} = \widehat {BFE}\] (cmt) nên \[\widehat {AEH} + \widehat {BEF} = 90^\circ \].

Ta có: \[\widehat {AEH} + \widehat {BEF} + \widehat {HEF} = 180^\circ \]

Suy ra \[\widehat {HEF} = 180^\circ  - \left( {\widehat {AEH} + \widehat {BEF}} \right) = 180^\circ  - 90^\circ  = 90^\circ \].

Vậy \(\widehat {FEH} = 90^\circ .\)

d) Đúng.

Vì có \(AB = BC = CD = DA\) và \(AE = BF = CG = DH\) nên

ta chứng minh được \(\Delta AEH = \Delta BFE = \Delta CGF = \Delta DHG\).

Suy ra \(HE = EF = FG = GH\) nên \(EFGH\) là hình thoi.

Mà \(\widehat {FEH} = 90^\circ \) nên \(EFGH\) là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 99

Cho tứ giác \(ABCD\) có \(AB\parallel CD,\) \[\widehat {ABC} = 135^\circ ,{\rm{ }}\widehat {ACB} = 24^\circ ,{\rm{ }}\widehat {ADC} = 60^\circ \]. Hỏi số đo của \(\widehat {DAC}\) bằng bao nhiêu độ? (ảnh 1)

Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(ABC\) ta có;

\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \), suy ra \(\widehat {BAC} = 180^\circ  - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 21^\circ \).

Vì \(AB\parallel CD\) nên \(\widehat {BAC} = \widehat {ACD} = 21^\circ \) (so le trong).

Xét tam giác \(ACD\) có: \(\widehat {ACD} + \widehat {ADC} + \widehat {CAD} = 180^\circ \) (tổng ba góc trong một tam giác).

Do đó, \(\widehat {CAD} = 180^\circ  - \left( {\widehat {ACD} + \widehat {ADC}} \right) = 180^\circ  - \left( {60^\circ  + 21^\circ } \right) = 99^\circ \).

Vậy \(\widehat {DAC} = 99^\circ \).

Lời giải

Cho hình bình hành \(ABCD\), đường chéo \(BD.\) Kẻ \(AH\) và \(CK\) vuông góc với \(BD\) lần lượt tại \(H\) và \(K.\) Gọi \(M\) là giao điểm của \(AK\) và \(BC\), gọi \(N\) là giao điểm của \(CH\) và \(AD\) và \(O\) là trung điểm của \(BD\). (ảnh 1)

a) Sai.

Xét \(\Delta ADH\) và \(\Delta CKB\), có:

\(\widehat {{D_1}} = \widehat {{B_1}}\) (so le trong)

\(AD = BC\) (gt)

Do đó, \(\Delta ADH = \Delta CBK\)(ch – gn).

b) Đúng.

Vì \(\Delta ADH = \Delta CBK\) (cmt) nên \(AH = CK\) (hai góc tương ứng).

Lại có \(AH\parallel CK\) (cùng vuông góc với \(BD\)).

Do đó, \(AKCH\) là hình bình hành.

Suy ra \(AK\parallel CH\).

c) Đúng.

Vì \(M\) là giao điểm của \(AK\) và \(BC\), \(N\) là giao điểm của \(CH\) và \(AD\) nên ta có:

\(AM\parallel CN\) và \(AN\parallel CM\).

Suy ra \(AMCN\) là hình bình hành.

Do đó, \(AM = CN\).

d) Đúng.

Vì \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(BD\) nên \(O\) cũng là trung điểm của \(AC\).

Mặt khác \(AMCN\) là hình bình hành nên hai đường chéo \(AC\) và \(MN\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(AC\) nên \(O\) cũng là trung điểm của \(MN\) hay ba điểm \(M,O,N\) thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(ABCD\) là hình bình hành.                                

B. \(\Delta ABC = \Delta CDA\).

C. \(ABCD\) là hình thang cân. 
D. \(BC\parallel AD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Có hai đường chéo bằng nhau.

B. Có hai đường chéo vuông góc.

C. Có hai góc kề một đáy bằng nhau.

D. Có một góc vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP