Câu hỏi:

20/09/2025 34 Lưu

Cho hình vuông \(ABCD.\) Trên cạnh \(AB,BC,CD,DA\) lần lượt lấy các điểm \(E,F,G,H\) sao cho \(AE = BF = CG = DH\).

         a) \(AH = BE = CF = DG.\)

         b) \(\Delta AEH = \Delta BEF\).

         c) \(\widehat {FEH} < 90^\circ \).

         d) \(EFGH\) là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình vuông \(ABCD.\) Trên cạnh \(AB,BC,CD,DA\) lần lượt lấy các điểm \(E,F,G,H\) sao cho \(AE = BF = CG = DH\). a) \(AH = BE = CF = DG.\)   b) \(\Delta AEH = \Delta BEF\). (ảnh 1)

a) Đúng.

Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA\).

Mà \(AE = BF = CG = DH\) nên \(AH = BE = CF = DG.\)

b) Sai.

Xét \(\Delta AEH\) và \(\Delta BEF\), có:

\(AE = BF\) (gt)

\(AH = BE\) (cmt)

Do đó, \(\Delta AEH = \Delta BFE\) (2cgv).

c) Sai.

Vì \(\Delta AEH = \Delta BFE\) (cmt) nên \[\widehat {AEH} = \widehat {BFE}\] (hai góc tương ứng).

Trong tam giác \(\Delta BFE\) vuông tại \(B\) có: \[\widehat {FEB} + \widehat {BFE} = 90^\circ \] (phụ nhau).

Mà \[\widehat {AEH} = \widehat {BFE}\] (cmt) nên \[\widehat {AEH} + \widehat {BEF} = 90^\circ \].

Ta có: \[\widehat {AEH} + \widehat {BEF} + \widehat {HEF} = 180^\circ \]

Suy ra \[\widehat {HEF} = 180^\circ  - \left( {\widehat {AEH} + \widehat {BEF}} \right) = 180^\circ  - 90^\circ  = 90^\circ \].

Vậy \(\widehat {FEH} = 90^\circ .\)

d) Đúng.

Vì có \(AB = BC = CD = DA\) và \(AE = BF = CG = DH\) nên

ta chứng minh được \(\Delta AEH = \Delta BFE = \Delta CGF = \Delta DHG\).

Suy ra \(HE = EF = FG = GH\) nên \(EFGH\) là hình thoi.

Mà \(\widehat {FEH} = 90^\circ \) nên \(EFGH\) là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành \(ABCD\), đường chéo \(BD.\) Kẻ \(AH\) và \(CK\) vuông góc với \(BD\) lần lượt tại \(H\) và \(K.\) Gọi \(M\) là giao điểm của \(AK\) và \(BC\), gọi \(N\) là giao điểm của \(CH\) và \(AD\) và \(O\) là trung điểm của \(BD\). (ảnh 1)

a) Sai.

Xét \(\Delta ADH\) và \(\Delta CKB\), có:

\(\widehat {{D_1}} = \widehat {{B_1}}\) (so le trong)

\(AD = BC\) (gt)

Do đó, \(\Delta ADH = \Delta CBK\)(ch – gn).

b) Đúng.

Vì \(\Delta ADH = \Delta CBK\) (cmt) nên \(AH = CK\) (hai góc tương ứng).

Lại có \(AH\parallel CK\) (cùng vuông góc với \(BD\)).

Do đó, \(AKCH\) là hình bình hành.

Suy ra \(AK\parallel CH\).

c) Đúng.

Vì \(M\) là giao điểm của \(AK\) và \(BC\), \(N\) là giao điểm của \(CH\) và \(AD\) nên ta có:

\(AM\parallel CN\) và \(AN\parallel CM\).

Suy ra \(AMCN\) là hình bình hành.

Do đó, \(AM = CN\).

d) Đúng.

Vì \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(BD\) nên \(O\) cũng là trung điểm của \(AC\).

Mặt khác \(AMCN\) là hình bình hành nên hai đường chéo \(AC\) và \(MN\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(AC\) nên \(O\) cũng là trung điểm của \(MN\) hay ba điểm \(M,O,N\) thẳng hàng.

Lời giải

a) Đúng.

Theo đề, ta có: \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (giả thiết) (1)

Lại có: \(\widehat {EDC} + \widehat {ADC} = 180^\circ \) (hai góc kề bù) (2)

Từ (1) và (2) suy ra \(\widehat {ABC} = \widehat {EDC}\).

b) Sai.

Xét \(\Delta ABC\) và \(\Delta DEC\), có:

\(AB = DE\) (gt)

\(BC = DE\) (gt)

\(\widehat {ABC} = \widehat {EDC}\) (cmt)

Do đó, \(\Delta ABC = \Delta EDC\) (c.g.c).

c) Đúng.

Vì \(\Delta ABC = \Delta EDC\) (cmt) nên \(AC = EC\) (hai cạnh tương ứng).

Do đó, \(\Delta CAE\) là tam giác cân tại \(C\).

d) Đúng.

Vì \(\Delta CAE\) là tam giác câm tại \(C\) nên \(\widehat {CEA} = \widehat {CAE}\) (*)

Lại có \(\Delta ABC = \Delta EDC\) nên \(\widehat {BAC} = \widehat {DEC}\) (**)

Từ (*) và (**) suy ra \(\widehat {BAC} = \widehat {CAE}\).

Do đó, \(AC\) là tia phân giác của \(\widehat {BAD}\).

Câu 5

A. \(125^\circ .\) 

B. \(65^\circ .\)  
C. \(90^\circ .\)   
D. \(55^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP