Câu hỏi:

20/09/2025 82 Lưu

Cho tứ giác \(ABCD\) như hình vẽ dưới đây, biết \(\widehat C = 90^\circ ,\widehat A = 120^\circ \).

Cho tứ giác \(ABCD\) như hình vẽ dưới đây, biết \(\widehat C = 90^\circ ,\widehat A = 120^\circ \).   Hỏi số đo của \(\widehat {ABC}\) bằng bao nhiêu độ? (ảnh 1)

Hỏi số đo của \(\widehat {ABC}\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 75

Tam giác \(ABD\) có \(AB = AD\) nên \(\Delta ABD\) cân tại \(A\). Do đó, \(\widehat {ABD} = \widehat {ADB} = \frac{{180^\circ  - 120^\circ }}{2} = 30^\circ \).

Tam giác \(DBC\) có \(DC = CB\) nên \(\Delta DCB\) vuông cân tại \(C\).  Do đó, \(\widehat {CDB} = \widehat {CBD} = 45^\circ \).

Vậy \(\widehat {ABC} = \widehat {ABD} + \widehat {DBC} = 30^\circ  + 45^\circ  = 75^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành \(ABCD\), đường chéo \(BD.\) Kẻ \(AH\) và \(CK\) vuông góc với \(BD\) lần lượt tại \(H\) và \(K.\) Gọi \(M\) là giao điểm của \(AK\) và \(BC\), gọi \(N\) là giao điểm của \(CH\) và \(AD\) và \(O\) là trung điểm của \(BD\). (ảnh 1)

a) Sai.

Xét \(\Delta ADH\) và \(\Delta CKB\), có:

\(\widehat {{D_1}} = \widehat {{B_1}}\) (so le trong)

\(AD = BC\) (gt)

Do đó, \(\Delta ADH = \Delta CBK\)(ch – gn).

b) Đúng.

Vì \(\Delta ADH = \Delta CBK\) (cmt) nên \(AH = CK\) (hai góc tương ứng).

Lại có \(AH\parallel CK\) (cùng vuông góc với \(BD\)).

Do đó, \(AKCH\) là hình bình hành.

Suy ra \(AK\parallel CH\).

c) Đúng.

Vì \(M\) là giao điểm của \(AK\) và \(BC\), \(N\) là giao điểm của \(CH\) và \(AD\) nên ta có:

\(AM\parallel CN\) và \(AN\parallel CM\).

Suy ra \(AMCN\) là hình bình hành.

Do đó, \(AM = CN\).

d) Đúng.

Vì \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(BD\) nên \(O\) cũng là trung điểm của \(AC\).

Mặt khác \(AMCN\) là hình bình hành nên hai đường chéo \(AC\) và \(MN\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(AC\) nên \(O\) cũng là trung điểm của \(MN\) hay ba điểm \(M,O,N\) thẳng hàng.

Lời giải

a) Đúng.

Theo đề, ta có: \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (giả thiết) (1)

Lại có: \(\widehat {EDC} + \widehat {ADC} = 180^\circ \) (hai góc kề bù) (2)

Từ (1) và (2) suy ra \(\widehat {ABC} = \widehat {EDC}\).

b) Sai.

Xét \(\Delta ABC\) và \(\Delta DEC\), có:

\(AB = DE\) (gt)

\(BC = DE\) (gt)

\(\widehat {ABC} = \widehat {EDC}\) (cmt)

Do đó, \(\Delta ABC = \Delta EDC\) (c.g.c).

c) Đúng.

Vì \(\Delta ABC = \Delta EDC\) (cmt) nên \(AC = EC\) (hai cạnh tương ứng).

Do đó, \(\Delta CAE\) là tam giác cân tại \(C\).

d) Đúng.

Vì \(\Delta CAE\) là tam giác câm tại \(C\) nên \(\widehat {CEA} = \widehat {CAE}\) (*)

Lại có \(\Delta ABC = \Delta EDC\) nên \(\widehat {BAC} = \widehat {DEC}\) (**)

Từ (*) và (**) suy ra \(\widehat {BAC} = \widehat {CAE}\).

Do đó, \(AC\) là tia phân giác của \(\widehat {BAD}\).

Câu 5

A. \(125^\circ .\) 

B. \(65^\circ .\)  
C. \(90^\circ .\)   
D. \(55^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP