Câu hỏi:

20/09/2025 63 Lưu

Cho tam giác \(ABC\)\(AB < AC.\) Tia phân giác \(\widehat {BAC}\) cắt cạnh \(BC\) tại điểm \(D.\) Gọi \(M\) là trung điểm của cạnh \(BC.\) Qua điểm \(M\) kẻ đường thẳng song song với đường thẳng \(AD\) cắt các đường thẳng \(AC,\,\,AB\) lần lượt tại \(E\)\(K.\) Chứng minh rằng:

     a) Tam giác \(AEK\) cân.         b) \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)            c) \(BK = EC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).

\(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {AEK}\) (so le trong).

\(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)

Do đó \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)

Tam giác \(AEK\)\(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)

b) Xét \(\Delta ACD\)\(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)

Cho tam giác \(ABC\) có \(AB < AC.\) Tia phân giác \(\widehat {BAC}\) cắt cạnh \(BC\) tại điểm \(D.\) Gọi \(M\) là trung điểm của cạnh \(BC.\) Qua điểm \(M\) kẻ đường thẳng song song với đường thẳng \(AD\) cắt các đường thẳn (ảnh 1)

\(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)

Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)

Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)

c) Xét \(\Delta BMK\)\(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)

Theo câu b, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh tứ giác ADME là hình chữ nhật, từ đó suy ra AE = DM. (ảnh 1)

a) Xét tứ giác \(ADME\) có:  

\(\widehat {AEM} = 90^\circ \) (do \(ME \bot AC);\)

\(\widehat {EAD} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A);\)

\(\widehat {ADM} = 90^\circ \) (do \(MD \bot AB)\)

Suy ra tứ giác \(ADME\) là hình chữ nhật (dấu hiệu nhận biết).

Do đó \(AE = DM\) (tính chất hình chữ nhật). (1)

b) Xét \(\Delta ABC\)\(M\) là trung điểm của \(BC\)\(MD\,{\rm{//}}\,AC\) (cùng vuông góc với \(AB)\) nên \(MD\) là đường trung bình của tam giác, do đó \(D\) là trung điểm của \(AB.\)

Chứng minh tương tự, ta cũng có \(E\) là trung điểm của \[AC.\]

Khi đó \(DE\) là đường trung bình của \(\Delta ABC.\)

Do đó \(DE\,{\rm{//}}\,BC\) (tính chất đường trung bình), hay \(DE\,{\rm{//}}\,HM.\)

Tứ giác \(DHME\)\(DE\,{\rm{//}}\,HM\) nên \(DHME\) là hình thang.

Xét \(\Delta AHC\) vuông tại \(H\)\(HE\) là đường trung tuyến ứng với cạnh huyền \[AC\] nên \(HE = \frac{1}{2}AC\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)

\(E\) là trung điểm của \(AC\) nên \(AE = \frac{1}{2}AC.\) Do đó \(HE = AE\) (2).

Từ (1) và (2) suy ra \(DM = HE.\)

Hình thang \(DHME\)\(DM = HE\) nên là hình thang cân.

c) Vì \(ADME\) là hình chữ nhật (câu a) nên \(AD = ME\) (tính chất hình chữ nhật).

Lại có \(D,\,M\) lần lượt là trung điểm của \(AB,NE\) nên \(AB = 2AD\)\(NE = 2ME.\)

Do đó \[AB = NE.\]

Tứ giác \(ABNE\)\(AB = NE\) (chứng minh trên) và \(AB\,{\rm{//}}\,NE\) (cùng vuông góc với \(AC)\) nên \(ABNE\) là hình bình hành.

Lại có \(\widehat {BAE} = 90^\circ \) nên hình bình hành \(ABNE\) là hình chữ nhật.

Khi đó hai đường chéo \(AN,\,\,BE\) bằng nhau và cắt nhau tại trung điểm của mỗi đường.

Gọi \(I\) là giao điểm của \(AN,\,\,BE\) thì \(I\) là trung điểm của \(AN,\,\,BE.\)

Xét \(\Delta BKE\) vuông tại \(K\)\(KI\) là đường trung tuyến ứng với cạnh huyền \(BE\) nên \(KI = \frac{1}{2}BE\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)

\(AN = BE\) nên \(KI = \frac{1}{2}AN.\)

Xét \(\Delta AKN\)\(KI\) là đường trung tuyến ứng với cạnh \(AN\)\(KI = \frac{1}{2}AN.\)

Do đó \(\Delta AKN\) vuông tại \(K\) nên \(AK \bot KN\) tại \(K.\)

Lời giải

h) \(2{x^2} - 5x + 3 = 0\)

\(2{x^2} - 2x - 3x + 3 = 0\)

\(\left( {2{x^2} - 2x} \right) - \left( {3x - 3} \right) = 0\)

\(2x\left( {x - 1} \right) - 3\left( {x - 1} \right) = 0\)

\(\left( {x - 1} \right)\left( {2x - 3} \right) = 0\)

\(x - 1 = 0\) hoặc \(2x - 3 = 0\)

\(x = 1\) hoặc \(x = \frac{3}{2}\)

Vậy \(x = 1\); \(x = \frac{3}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho \(\Delta ABC\) có trung tuyến \(AD.\) Vẽ tia phân giác của \[\widehat {ADB}\] cắt \(AB\) tại \(M,\) tia phân giác của \[\widehat {ADC}\] cắt \(AC\) tại \(N.\) Chứng minh rằng:

a) \[\frac{{MB}}{{MA}} = \frac{{BD}}{{AD}}.\]            

b) \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]                     

c) \(MN\,{\rm{//}}\,BC.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(\Delta ABC\) có trung tuyến \(AD\), trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần lượt tại \(E,\,\,F.\) Từ \(B,\,\,C\) kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:

     a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\)              b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\)                  c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP