Cho hình thang \(ABCD\) có hai đáy \(AB\) và \(CD.\) Gọi \(M\) là trung điểm của \(CD,\) \(E\) là giao điểm của \(MA\) và \(BD,\) \(F\) là giao điểm của \(MB\) và \(AC.\)
a) Chứng minh rằng \[EF\,{\rm{//}}\,AB.\]
b) Đường thẳng \(EF\) cắt \(AD,\,\,BC\) lần lượt tại \(H\) và \(N.\) Chứng minh \(HE = EF = FN.\)
c) Biết \(AB = 7,5{\rm{\;cm}},\,\,CD = 12{\rm{\;cm}}.\) Tính độ dài \(HN.\)
Cho hình thang \(ABCD\) có hai đáy \(AB\) và \(CD.\) Gọi \(M\) là trung điểm của \(CD,\) \(E\) là giao điểm của \(MA\) và \(BD,\) \(F\) là giao điểm của \(MB\) và \(AC.\)
a) Chứng minh rằng \[EF\,{\rm{//}}\,AB.\]
b) Đường thẳng \(EF\) cắt \(AD,\,\,BC\) lần lượt tại \(H\) và \(N.\) Chứng minh \(HE = EF = FN.\)
c) Biết \(AB = 7,5{\rm{\;cm}},\,\,CD = 12{\rm{\;cm}}.\) Tính độ dài \(HN.\)
Quảng cáo
Trả lời:
|
a) Vì \(ABCD\) là hình thang có hai đáy \(AB\) và \(CD\) nên \(AB\,{\rm{//}}\,CD.\) Vì \(AB\,{\rm{//}}\,DM\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả định lí Thalès ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}}.\) \(\left( 1 \right)\) Vì \(AB\,{\rm{//}}\,MC\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả định lí |
|
Thalès ta có \(\frac{{BF}}{{FM}} = \frac{{AB}}{{MC}}.\) \(\left( 2 \right)\)
Lại có \(M\) là trung điểm của \(CD\) nên \(DM = MC.\) \(\left( 3 \right)\)
Từ \(\left( 1 \right),\) \(\left( 2 \right)\) và \(\left( 3 \right)\) ta có \(\frac{{AE}}{{EM}} = \frac{{BF}}{{FM}},\) theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,AB.\)
b) Xét \(\Delta ADM\) có \(HE\,{\rm{//}}\,DM,\) theo hệ quả định lí Thalès ta có \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}.\)
Xét \(\Delta AMC\) có \(EF\,{\rm{//}}\,MC,\) theo hệ quả định lí Thalès ta có \[\frac{{EF}}{{MC}} = \frac{{AE}}{{AM}}.\]
Do đó \(\frac{{HE}}{{DM}} = \frac{{EF}}{{MC}},\) mà \(DM = MC\) nên \(HE = EF.\)
Chứng minh tương tự ta cũng có \(EF = FN.\) Suy ra \(HE = EF = FN.\)
c) Vì \(M\) là trung điểm của \(CD\) nên \(DM = MC = \frac{1}{2}CD = \frac{1}{2} \cdot 12 = 6{\rm{\;cm}}.\)
Theo câu a, ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}} = \frac{{7,5}}{6} = \frac{5}{4}.\) Suy ra \(\frac{{AE}}{5} = \frac{{EM}}{4}.\)
Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AE}}{5} = \frac{{EM}}{4} = \frac{{AE + EM}}{{5 + 4}} = \frac{{AM}}{9}.\)
Do đó \(\frac{{AE}}{{AM}} = \frac{5}{9}.\)
Mà theo câu b, \[\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}\] nên \[\frac{{HE}}{{DM}} = \frac{5}{9}.\]
Suy ra \(HE = \frac{5}{9}DM = \frac{5}{9} \cdot 6 = \frac{{10}}{3}{\rm{\;cm}}.\)
Lại có \(HE = EF = FN\) (câu b) nên \(HN = 3HE = 3 \cdot \frac{{10}}{3} = 10{\rm{\;cm}}.\)
Vậy \(HN = 10{\rm{\;cm}}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tứ giác \(ADME\) có:
\(\widehat {AEM} = 90^\circ \) (do \(ME \bot AC);\)
\(\widehat {EAD} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A);\)
\(\widehat {ADM} = 90^\circ \) (do \(MD \bot AB)\)
Suy ra tứ giác \(ADME\) là hình chữ nhật (dấu hiệu nhận biết).
Do đó \(AE = DM\) (tính chất hình chữ nhật). (1)
b) ⦁ Xét \(\Delta ABC\) có \(M\) là trung điểm của \(BC\) và \(MD\,{\rm{//}}\,AC\) (cùng vuông góc với \(AB)\) nên \(MD\) là đường trung bình của tam giác, do đó \(D\) là trung điểm của \(AB.\)
Chứng minh tương tự, ta cũng có \(E\) là trung điểm của \[AC.\]
Khi đó \(DE\) là đường trung bình của \(\Delta ABC.\)
Do đó \(DE\,{\rm{//}}\,BC\) (tính chất đường trung bình), hay \(DE\,{\rm{//}}\,HM.\)
Tứ giác \(DHME\) có \(DE\,{\rm{//}}\,HM\) nên \(DHME\) là hình thang.
⦁ Xét \(\Delta AHC\) vuông tại \(H\) có \(HE\) là đường trung tuyến ứng với cạnh huyền \[AC\] nên \(HE = \frac{1}{2}AC\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
Mà \(E\) là trung điểm của \(AC\) nên \(AE = \frac{1}{2}AC.\) Do đó \(HE = AE\) (2).
Từ (1) và (2) suy ra \(DM = HE.\)
Hình thang \(DHME\) có \(DM = HE\) nên là hình thang cân.
c) Vì \(ADME\) là hình chữ nhật (câu a) nên \(AD = ME\) (tính chất hình chữ nhật).
Lại có \(D,\,M\) lần lượt là trung điểm của \(AB,NE\) nên \(AB = 2AD\) và \(NE = 2ME.\)
Do đó \[AB = NE.\]
Tứ giác \(ABNE\) có \(AB = NE\) (chứng minh trên) và \(AB\,{\rm{//}}\,NE\) (cùng vuông góc với \(AC)\) nên \(ABNE\) là hình bình hành.
Lại có \(\widehat {BAE} = 90^\circ \) nên hình bình hành \(ABNE\) là hình chữ nhật.
Khi đó hai đường chéo \(AN,\,\,BE\) bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Gọi \(I\) là giao điểm của \(AN,\,\,BE\) thì \(I\) là trung điểm của \(AN,\,\,BE.\)
Xét \(\Delta BKE\) vuông tại \(K\) có \(KI\) là đường trung tuyến ứng với cạnh huyền \(BE\) nên \(KI = \frac{1}{2}BE\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
Mà \(AN = BE\) nên \(KI = \frac{1}{2}AN.\)
Xét \(\Delta AKN\) có \(KI\) là đường trung tuyến ứng với cạnh \(AN\) và \(KI = \frac{1}{2}AN.\)
Do đó \(\Delta AKN\) vuông tại \(K\) nên \(AK \bot KN\) tại \(K.\)
Lời giải
h) \(2{x^2} - 5x + 3 = 0\)
\(2{x^2} - 2x - 3x + 3 = 0\)
\(\left( {2{x^2} - 2x} \right) - \left( {3x - 3} \right) = 0\)
\(2x\left( {x - 1} \right) - 3\left( {x - 1} \right) = 0\)
\(\left( {x - 1} \right)\left( {2x - 3} \right) = 0\)
\(x - 1 = 0\) hoặc \(2x - 3 = 0\)
\(x = 1\) hoặc \(x = \frac{3}{2}\)
Vậy \(x = 1\); \(x = \frac{3}{2}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho \(\Delta ABC\) có trung tuyến \(AD\), trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần lượt tại \(E,\,\,F.\) Từ \(B,\,\,C\) kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:
a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\) b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\) c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)
Cho \(\Delta ABC\) có trung tuyến \(AD\), trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần lượt tại \(E,\,\,F.\) Từ \(B,\,\,C\) kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:
a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\) b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\) c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Chứng minh rằng \[EF\,{\rm{//}}\,AB.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/65-1758353408.png)
![Tìm độ dài \[x,{\rm{ }}y\] trong mỗi trường hợp sau (làm tròn kết quả đến hàng phần mười): (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/screenshot-3568-1758353173.png)