Quảng cáo
Trả lời:

Hướng dẫn giải a) Gọi \(AD\) là đường phân giác góc \(BAC\) \(\left( {D \in BC} \right).\) Xét \(\Delta ABC\) có \(AD\) là đường phân giác của \(\widehat {BAC}\) nên \[\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}},\] hay \[\frac{{DC}}{{AC}} = \frac{{DB}}{{AB}}.\] Theo tính chất dãy tỉ số bằng nhau ta có: \[\frac{{DC}}{{AC}} = \frac{{DB}}{{AB}} = \frac{{DC + DB}}{{AC + AB}} = \frac{{BC}}{{AC + AB}} = \frac{{15}}{{18 + 12}} = \frac{1}{2}.\] |
|
Suy ra \(CD = \frac{1}{2}AC = \frac{1}{2} \cdot 18 = 9{\rm{\;cm}}\) và \(BD = \frac{1}{2}AB = \frac{1}{2} \cdot 12 = 6{\rm{\;cm}}.\)
Xét \(\Delta ACD,\) có \(CI\) là đường phân giác của \(\widehat {ACD}\) (do \(I\) là tâm đường tròn nội tiếp \(\Delta ABC)\) nên \(\frac{{AI}}{{DI}} = \frac{{AC}}{{CD}} = \frac{{18}}{9} = 2.\)
Gọi \(M\) là trung điểm của \(BC.\) Do \(G\) là trọng tâm của \(\Delta ABC\) nên \(\frac{{AG}}{{GM}} = 2.\)
Do đó \(\frac{{AI}}{{ID}} = \frac{{AG}}{{GM}} = 2,\) theo định lí Thalès đảo ta có \(IG\,{\rm{//}}\,BC.\)
b) Vì \(M\) là trung điểm của \(BC\) nên \[MB = MC = \frac{1}{2}BC = \frac{1}{2} \cdot 15 = 7,5{\rm{\;cm}}.\]
Suy ra \(DM = BM - BD = 7,5 - 6 = 1,5{\rm{\;cm}}.\)
Xét \(\Delta ADM\) có \(IG\,{\rm{//}}\,BC,\) theo hệ quả định lí Thalès ta có \(\frac{{IG}}{{DM}} = \frac{{AG}}{{AM}} = \frac{2}{3}.\)
Suy ra \(IG = \frac{2}{3}DM = \frac{2}{3} \cdot 1,5 = 1{\rm{\;cm}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét tứ giác \(ADME\) có:
\(\widehat {AEM} = 90^\circ \) (do \(ME \bot AC);\)
\(\widehat {EAD} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A);\)
\(\widehat {ADM} = 90^\circ \) (do \(MD \bot AB)\)
Suy ra tứ giác \(ADME\) là hình chữ nhật (dấu hiệu nhận biết).
Do đó \(AE = DM\) (tính chất hình chữ nhật). (1)
b) ⦁ Xét \(\Delta ABC\) có \(M\) là trung điểm của \(BC\) và \(MD\,{\rm{//}}\,AC\) (cùng vuông góc với \(AB)\) nên \(MD\) là đường trung bình của tam giác, do đó \(D\) là trung điểm của \(AB.\)
Chứng minh tương tự, ta cũng có \(E\) là trung điểm của \[AC.\]
Khi đó \(DE\) là đường trung bình của \(\Delta ABC.\)
Do đó \(DE\,{\rm{//}}\,BC\) (tính chất đường trung bình), hay \(DE\,{\rm{//}}\,HM.\)
Tứ giác \(DHME\) có \(DE\,{\rm{//}}\,HM\) nên \(DHME\) là hình thang.
⦁ Xét \(\Delta AHC\) vuông tại \(H\) có \(HE\) là đường trung tuyến ứng với cạnh huyền \[AC\] nên \(HE = \frac{1}{2}AC\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
Mà \(E\) là trung điểm của \(AC\) nên \(AE = \frac{1}{2}AC.\) Do đó \(HE = AE\) (2).
Từ (1) và (2) suy ra \(DM = HE.\)
Hình thang \(DHME\) có \(DM = HE\) nên là hình thang cân.
c) Vì \(ADME\) là hình chữ nhật (câu a) nên \(AD = ME\) (tính chất hình chữ nhật).
Lại có \(D,\,M\) lần lượt là trung điểm của \(AB,NE\) nên \(AB = 2AD\) và \(NE = 2ME.\)
Do đó \[AB = NE.\]
Tứ giác \(ABNE\) có \(AB = NE\) (chứng minh trên) và \(AB\,{\rm{//}}\,NE\) (cùng vuông góc với \(AC)\) nên \(ABNE\) là hình bình hành.
Lại có \(\widehat {BAE} = 90^\circ \) nên hình bình hành \(ABNE\) là hình chữ nhật.
Khi đó hai đường chéo \(AN,\,\,BE\) bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Gọi \(I\) là giao điểm của \(AN,\,\,BE\) thì \(I\) là trung điểm của \(AN,\,\,BE.\)
Xét \(\Delta BKE\) vuông tại \(K\) có \(KI\) là đường trung tuyến ứng với cạnh huyền \(BE\) nên \(KI = \frac{1}{2}BE\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
Mà \(AN = BE\) nên \(KI = \frac{1}{2}AN.\)
Xét \(\Delta AKN\) có \(KI\) là đường trung tuyến ứng với cạnh \(AN\) và \(KI = \frac{1}{2}AN.\)
Do đó \(\Delta AKN\) vuông tại \(K\) nên \(AK \bot KN\) tại \(K.\)
Lời giải
Hướng dẫn giải
⦁ Hình 1: Ta có \(MB = AB - AM = 7 - 2 = 5.\) Tam giác \(ABC\) có \(MN\,{\rm{//}}\,AB,\) theo định lí Thalès ta có: \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) hay \(\frac{2}{5} = \frac{x}{6},\) suy ra \(x = \frac{{2 \cdot 6}}{5} = 2,4.\) Vậy \(x = 2,4.\) |
![]() Hình 1 |
⦁ Hình 2: Ta có: \[EF \bot MN,\,\,NP \bot MN\] nên \[EF\,{\rm{//}}\,NP.\] \(MP = MF + FP = 5 + 15 = 20.\) Tam giác \[MNP\] có \[EF\,{\rm{//}}\,NP,\] theo định lí Thalès ta có: \[\frac{{ME}}{{MN}} = \frac{{MF}}{{MP}}\] hay \(\frac{3}{y} = \frac{5}{{20}},\) suy ra \(y = \frac{{3 \cdot 20}}{5} = 12.\) Vậy \(y = 12.\) |
![]() Hình 2 |
Tam giác \[ABC\] có \[M,\,\,N\] lần lượt là trung điểm của \[AB\] và \[AC\] nên \[MN\] là đường trung bình của tam giác. Do đó \[MN = \frac{1}{2}BC = \frac{1}{2} \cdot 15 = 7,5\,\,\left( {{\rm{cm}}} \right).\] Vậy \[x = 7,5\,\,{\rm{cm}}.\] |
![]() Hình 3 |
Tam giác \[ABC\] có \[M,\,\,N\] lần lượt là trung điểm của \[AB\] và \[AC\] nên \[MN\] là đường trung bình của tam giác. Do đó \[MN = \frac{1}{2}BC.\] Suy ra \[x = BC = 2MN = 2 \cdot 3,5 = 7\left( {{\rm{cm}}} \right).\] Vậy \(x = 7{\rm{\;cm}}.\) |
![]() Hình 4 |
⦁ Hình 5: Xét tam giác \[ABC\] có \[AD\] là phân giác trong góc \[\widehat {BAC}\] (do \[\widehat {BAD} = \widehat {CAD}),\] nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}},\) hay \[\frac{5}{{8,5}} = \frac{3}{{DC}}\] Suy ra \[DC = \frac{{8,5 \cdot 3}}{5} = 5,1.\] Khi đó \(x = BC = DB + DC = 3 + 5,1 = 8,1.\) |
![]() Hình 5 |
Xét tam giác \[IKJ\] có \[IL\] là phân giác trong góc \[\widehat {KIJ}\] (do \(\widehat {KIL} = \widehat {JIL}),\) nên \(\frac{{IK}}{{IJ}} = \frac{{LK}}{{LJ}}\) suy ra \[\frac{{LK}}{{IK}} = \frac{{LJ}}{{IJ}}\] hay \[\frac{{LK}}{{6,2}} = \frac{{LJ}}{{8,7}}\] Theo tính chất dãy tỉ số bằng nhau ta có: \[\frac{{LK}}{{6,2}} = \frac{{LJ}}{{8,7}} = \frac{{LK + LJ}}{{6,2 + 8,7}} = \frac{{KJ}}{{14,9}} = \frac{{12,5}}{{14,9}}.\] Suy ra \[LJ = \frac{{12,5}}{{14,9}} \cdot 8,7 \approx 7,3.\] |
![]() Hình 6 |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho \(\Delta ABC\) có trung tuyến \(AD\), trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần lượt tại \(E,\,\,F.\) Từ \(B,\,\,C\) kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:
a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\) b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\) c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)
Cho \(\Delta ABC\) có trung tuyến \(AD\), trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần lượt tại \(E,\,\,F.\) Từ \(B,\,\,C\) kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:
a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\) b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\) c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.