Câu hỏi:

20/09/2025 34 Lưu

Lúc 6 giờ sáng, bạn Hải đi xe đạp từ điểm \[A\] đến trường (tại điểm \(B)\) phải leo lên và xuống một con dốc với đỉnh dốc tại điểm \[C\] (như hình vẽ).

Hỏi bạn Hải đến trường lúc mấy giờ nếu tốc độ trung bình xuống dốc là 10 km/h? (ảnh 1)

Điểm \(H\) là một điểm thuộc đoạn thẳng \[AB\] sao cho \[CH\] đường là phân giác \(\widehat {ACB},\) \[AH = 0,32{\rm{\;km}}\]\[BH = 0,4{\rm{\;km}}.\] Biết bạn Hải đi xe đạp đến \[C\] lúc 6 giờ 30 phút với tốc độ trung bình lên dốc là 4 km/h. Hỏi bạn Hải đến trường lúc mấy giờ nếu tốc độ trung bình xuống dốc là 10 km/h?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hỏi bạn Hải đến trường lúc mấy giờ nếu tốc độ trung bình xuống dốc là 10 km/h? (ảnh 2)

Thời gian để bạn Hải đi từ \[A\] đến \[C\] là: \[6\] giờ \[30\] phút \( - \,\,6\) giờ \[ = 30\] phút \[ = 0,5\] giờ.

Quãng đường mà bạn Hải đi từ \[A\] đến \[C\] trong \(0,5\) giờ với tốc độ trung bình lên dốc 4 km/h là: \[AC = {S_{A \to C}} = 4 \cdot 0,5 = 2\] (km).

Xét \(\Delta ACB\)\[CH\] là đường phân giác của \(\widehat {ACB},\) nên ta có: \(\frac{{HA}}{{HB}} = \frac{{CA}}{{CB}}\) hay \(\frac{{0,32}}{{0,4}} = \frac{2}{{CB}}\)

Suy ra \(CB = \frac{{0,4 \cdot 2}}{{0,32}} = 2,5\) (km).

Thời gian để bạn Hải đi hết quãng đường \(2,5\) km với tốc độ trung bình xuống dốc 10 km/h là: \(\frac{{2,5}}{{10}} = 0,25\) (giờ).

Như vậy, tổng thời gian bạn Hải đi từ \[A\] đến trường \[B\]

\[0,5 + 0,25 = 0,75\] (giờ) \[ = 45\] (phút).

Vậy nếu tốc độ trung bình xuống dốc là 10 km/h thì bạn Hải đến trường lúc 6 giờ 45 phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]

\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]

\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]

Đặt \[t = {y^2} - 11y\], ta có

\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]

   \[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]

Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].

Do đó \[D \le 36\].

Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]

\[{y^2} - 11y + 24 = 0\]

\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]

\[y = 3\] hoặc \[y = 8\]

Vậy giá trị lớn nhất của biểu thức \(D\)\(36\) khi \(y = 3\); \(y = 8\).

Lời giải

Hướng dẫn giải

a) Ta hoàn thành được biểu đồ cột kép biểu diễn dữ liệu trong biểu đồ đoạn thẳng như sau:

Hãy hoàn thành biểu đồ cột kép ở hình bên dưới để nhận được biểu đồ biểu diễn dữ liệu trong biểu đồ đoạn thẳng ở hình trên. (ảnh 3)

b) Trong năm 2020 lượng gia cầm ở Kon Tum nhiều nhất, là 1698 nghìn con.

c) Tổng số lượng gia cầm ở Kon Tum trong năm \[2015,\]\[2018,{\rm{ }}2019,{\rm{ }}2020\] là:

\(853 + 1\,\,431 + 1\,\,608 + 1\,\,698 = 5\,\,590\) (nghìn con).

Trong năm 2018, số lượng gia cầm ở TP. HCM \[(375\] nghìn con) ít hơn so với số lượng gia cầm ở Kon Tum \[(1{\rm{ }}431\] nghìn con) nên nhận định trên bài báo không chính xác.

d) Một vài giải pháp để tăng số lượng gia cầm ở Kon Tum trong những năm tới để đạt hiệu quả trong chăn nuôi:

Đẩy mạnh tuyên truyền, vận động nhân dân chăm sóc tốt đàn gia cầm hiện có;

Mạnh dạn đầu tư phát triển quy mô chăn nuôi, đa dạng các loại gia cầm;

Chú trọng việc lai tạo và cải thiện giống gia cầm địa phương;

Thường xuyên thực hiện vệ sinh tiêu độc khử trùng; …

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP