Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 6, 7, 9 được số dư theo thứ tự 2, 3, 5.
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 6, 7, 9 được số dư theo thứ tự 2, 3, 5.
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi số cần tìm là \(a.\)
Theo bài, ta có \[a + 4\] chia hết cho 6, 7, 9 nên \(\left( {a + 4} \right)\,\, \vdots \,\,{\rm{BCNN}}\left( {6,\,\,7,\,\,9} \right)\).
Ta có \(6 = 2 \cdot 3;\,\,\,\,\,7 = 7;\,\,\,\,\,9 = {3^2}.\) Do đó \({\rm{BCNN}}\left( {6,\,\,7,\,\,9} \right) = 2 \cdot {3^2} \cdot 7 = 126\)
Khi đó, \(a + 4 = 126k\) \(\left( {k \in \mathbb{N}} \right)\) hay \(a = 126k - 4\,\,\left( {k \in \mathbb{N}} \right)\)
Lại có \(a\) là số tự nhiên nhỏ nhất nên \[k = 1,\] suy ra \[a = 122.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(a\) là số chia cho 15 được dư là 9. Khi đó \(a = 15k + 9\,\,\left( {k \in \mathbb{N}} \right)\).
⦁ Ta thấy \(15\,\, \vdots \,\,3\) nên \(15k\,\, \vdots \,\,3\), lại có \(9\,\, \vdots \,\,3\) suy ra \(\left( {15k + 9} \right)\,\, \vdots \,\,3,\) tức là \(a\,\, \vdots \,\,3.\)
⦁ Ta thấy \[15k\,\, \vdots \,\,5\] và nên .
Lời giải
f) Vì \(24\,\, \vdots \,\,x,\,\,36\,\, \vdots \,\,x,\,\,160\,\, \vdots \,\,x\) và \[x\] là lớn nhất nên \(x = \) ƯCLN\(\left( {24,\,\,36,\,\,160} \right)\).
Ta có \(24 = {2^3} \cdot 3,\,\,\,\,\,36 = {2^2} \cdot {3^2};\,\,\,\,\,160 = {2^5} \cdot 5.\)
Do đó ƯCLN\(\left( {24,\,\,36,\,\,160} \right) = {2^2} = 4.\)
Vậy \(x = 4.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.