Tìm diện tích của một hình thang biết rằng nếu kéo dài đáy bé \(2\) m về một phía thì ta được hình vuông có chu vi \(24\) m.
Tìm diện tích của một hình thang biết rằng nếu kéo dài đáy bé \(2\) m về một phía thì ta được hình vuông có chu vi \(24\) m.
Quảng cáo
Trả lời:

Hướng dẫn giải Gọi hình thang đã cho là \(ABCD\); kéo dài đáy bé \(AB\) thêm \(2\) m về một phía thì ta được hình vuông \(AMCD\) có chu vi \(24\) m. Cạnh hình vuông \(AMCD\) là: \(24:4 = 6\) (m). Theo bài, ta thấy hình thang \(ABCD\) là hình thang vuông có chiều cao và độ dài đáy lớn bằng độ dài cạnh hình vuông \(AMCD\), và bằng \(6\) m. Đáy bé hình thang \(ABCD\) là: \(6 - 2 = 4\) (m). Diện tích hình thang ban đầu là: \(\frac{{\left( {4 + 6} \right) \cdot 6}}{2} = 30\) (m2). |
|
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
b) Gọi ƯCLN\(\left( {3n + 10,\,\,n + 3} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\), suy ra \(\left( {3n + 10} \right)\,\, \vdots \,\,d\) và \(\left( {n + 3} \right)\,\, \vdots \,\,d\)
Từ \(\left( {n + 3} \right)\,\, \vdots \,\,d\) ta suy ra \(\left( {3n + 9} \right)\,\, \vdots \,\,d\).
Do đó \(\left( {3n + 10 - 3n - 9} \right)\,\, \vdots \,\,d\) hay \(1\,\, \vdots \,\,d\) nên \(d = 1.\)
Vậy \(3n + 10;\,\,n + 3\) là hai số nguyên tố cùng nhau.
Lời giải
b) Gọi ƯCLN\(\left( {7n + 13,\,\,2n + 4} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\)
Suy ra \(\left( {7n + 13} \right)\,\, \vdots \,\,d\) và \(\left( {2n + 4} \right)\,\, \vdots \,\,d\)
Từ \(\left( {7n + 13} \right)\,\, \vdots \,\,d\) suy ra \[2\left( {7n + 13} \right)\,\, \vdots \,\,d\]
Từ \(\left( {2n + 4} \right)\,\, \vdots \,\,d\) suy ra \[7\left( {2n + 4} \right)\,\, \vdots \,\,d\]
Do đó \[\left[ {7\left( {2n + 4} \right) - 2\left( {7n + 13} \right)} \right]\,\, \vdots \,\,d\] hay \[2\,\, \vdots \,\,d\] nên \[d \in \left\{ {1;\,\,2} \right\}.\]
Để \(7n + 13\) và \(2n + 4\) là hai số nguyên tố cùng nhau thì \(d \ne 2\).
Mà \(2n + 4\) luôn chia hết cho 2 và \(7n + 13\) không chia hết cho 2 khi \(n\) chẵn.
Vậy \(n\) chẵn thì \(7n + 13\) và \(2n + 4\) là hai số nguyên tố cùng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.