Câu hỏi:

21/09/2025 16 Lưu

Tìm số tự nhiên \(x\) và \(y\), biết:

b) \(\left( {x - 5} \right)\left( {2y + 1} \right) = 12\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) Từ \(\left( {x - 5} \right)\left( {2y + 1} \right) = 12\) suy ra \(\left( {2y + 1} \right)\, \in \)Ư\(\left( {12} \right) = \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,6;\,\,12} \right\}\)

\(y\) là số tự nhiên nên \(2y + 1\) là số lẻ, suy ra \(2y + 1\, \in \left\{ {1;\,\,3} \right\}.\)

Ta có bảng sau:

\(2y + 1\)

\[1\]

\(3\)

\(x - 5\)

\(12\)

\(4\)

\(x\)

\(17\)

\(9\)

\(y\)

\(0\)

\(1\)

 

Thỏa mãn

Thỏa mãn

 Vậy \(\left( {x;\,\,y} \right) = \left\{ {\left( {17;\,\,0} \right);\,\,\left( {9;\,\,1} \right)} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

b) Gọi ƯCLN\(\left( {3n + 10,\,\,n + 3} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\), suy ra \(\left( {3n + 10} \right)\,\, \vdots \,\,d\)\(\left( {n + 3} \right)\,\, \vdots \,\,d\)

Từ \(\left( {n + 3} \right)\,\, \vdots \,\,d\) ta suy ra \(\left( {3n + 9} \right)\,\, \vdots \,\,d\).

Do đó \(\left( {3n + 10 - 3n - 9} \right)\,\, \vdots \,\,d\) hay \(1\,\, \vdots \,\,d\) nên \(d = 1.\)

Vậy \(3n + 10;\,\,n + 3\) là hai số nguyên tố cùng nhau.

Lời giải

b) Gọi ƯCLN\(\left( {7n + 13,\,\,2n + 4} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\)

Suy ra \(\left( {7n + 13} \right)\,\, \vdots \,\,d\)\(\left( {2n + 4} \right)\,\, \vdots \,\,d\)

Từ \(\left( {7n + 13} \right)\,\, \vdots \,\,d\) suy ra \[2\left( {7n + 13} \right)\,\, \vdots \,\,d\]

Từ \(\left( {2n + 4} \right)\,\, \vdots \,\,d\) suy ra \[7\left( {2n + 4} \right)\,\, \vdots \,\,d\]

Do đó \[\left[ {7\left( {2n + 4} \right) - 2\left( {7n + 13} \right)} \right]\,\, \vdots \,\,d\] hay \[2\,\, \vdots \,\,d\] nên \[d \in \left\{ {1;\,\,2} \right\}.\]

Để \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau thì \(d \ne 2\).

\(2n + 4\) luôn chia hết cho 2 và \(7n + 13\) không chia hết cho 2 khi \(n\) chẵn.

Vậy \(n\) chẵn thì \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP