Câu hỏi:

21/09/2025 20 Lưu

Tìm số tự nhiên \(x\)\(y\), biết:

d) \[xy + 2x + 3y = 0.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

d) Ta có \[xy + 2x + 3y = 0\]

\[x\left( {y + 2} \right) + 3\left( {y + 2} \right) - 6 = 0\]

\[\left( {x + 3} \right)\left( {y + 2} \right) = 6\].

Suy ra \(\left( {x + 3} \right) \in \)Ư\(\left( 6 \right) = \left\{ {1;\,\,2;\,\,3;\,\,6} \right\}\)

\(x\) là số tự nhiên nên \(x + 3 \ge 3\), suy ra \(\left( {x + 3} \right) \in \left\{ {3;\,\,6} \right\}\).

Ta có bảng sau:

\(x + 3\)

3

6

\(y + 2\)

2

1

\(x\)

0

3

\(y\)

0

 

 

Thỏa mãn

 

Vậy \(\left( {x;\,\,y} \right) = \left( {0;\,\,0} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

b) Gọi ƯCLN\(\left( {3n + 10,\,\,n + 3} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\), suy ra \(\left( {3n + 10} \right)\,\, \vdots \,\,d\)\(\left( {n + 3} \right)\,\, \vdots \,\,d\)

Từ \(\left( {n + 3} \right)\,\, \vdots \,\,d\) ta suy ra \(\left( {3n + 9} \right)\,\, \vdots \,\,d\).

Do đó \(\left( {3n + 10 - 3n - 9} \right)\,\, \vdots \,\,d\) hay \(1\,\, \vdots \,\,d\) nên \(d = 1.\)

Vậy \(3n + 10;\,\,n + 3\) là hai số nguyên tố cùng nhau.

Lời giải

b) Gọi ƯCLN\(\left( {7n + 13,\,\,2n + 4} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\)

Suy ra \(\left( {7n + 13} \right)\,\, \vdots \,\,d\)\(\left( {2n + 4} \right)\,\, \vdots \,\,d\)

Từ \(\left( {7n + 13} \right)\,\, \vdots \,\,d\) suy ra \[2\left( {7n + 13} \right)\,\, \vdots \,\,d\]

Từ \(\left( {2n + 4} \right)\,\, \vdots \,\,d\) suy ra \[7\left( {2n + 4} \right)\,\, \vdots \,\,d\]

Do đó \[\left[ {7\left( {2n + 4} \right) - 2\left( {7n + 13} \right)} \right]\,\, \vdots \,\,d\] hay \[2\,\, \vdots \,\,d\] nên \[d \in \left\{ {1;\,\,2} \right\}.\]

Để \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau thì \(d \ne 2\).

\(2n + 4\) luôn chia hết cho 2 và \(7n + 13\) không chia hết cho 2 khi \(n\) chẵn.

Vậy \(n\) chẵn thì \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP