Câu hỏi:

21/09/2025 18 Lưu

Tìm số tự nhiên \(x\) và \(y\), biết:

f) \(x + y = 35\) và ƯCLN\(\left( {x,\,\,y} \right) = 7\).   

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

f) Vì ƯCLN\(\left( {x,\,\,y} \right) = 7\) nên \(x = 7m;\,\,y = 7n\) với ƯCLN\(\left( {m,\,\,n} \right) = 1\).

Ta có \(x + y = 35\) suy ra \(7m + 7n = 35\) hay \(7\left( {m + n} \right) = 35,\) nên \(m + n = 5\).

Ta có bảng sau:

\(m\)

\[1\]

\(2\)

\(n\)

\(4\)

\(3\)

\(x\)

\(7\)

\(14\)

\(y\)

\(28\)

\(21\)

 

Thỏa mãn

Thỏa mãn

Vậy \(\left( {x;\,\,y} \right) \in \left\{ {\left( {7;\,\,28} \right);\,\,\left( {14;\,\,21} \right)} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

b) Gọi ƯCLN\(\left( {3n + 10,\,\,n + 3} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\), suy ra \(\left( {3n + 10} \right)\,\, \vdots \,\,d\)\(\left( {n + 3} \right)\,\, \vdots \,\,d\)

Từ \(\left( {n + 3} \right)\,\, \vdots \,\,d\) ta suy ra \(\left( {3n + 9} \right)\,\, \vdots \,\,d\).

Do đó \(\left( {3n + 10 - 3n - 9} \right)\,\, \vdots \,\,d\) hay \(1\,\, \vdots \,\,d\) nên \(d = 1.\)

Vậy \(3n + 10;\,\,n + 3\) là hai số nguyên tố cùng nhau.

Lời giải

b) Gọi ƯCLN\(\left( {7n + 13,\,\,2n + 4} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\)

Suy ra \(\left( {7n + 13} \right)\,\, \vdots \,\,d\)\(\left( {2n + 4} \right)\,\, \vdots \,\,d\)

Từ \(\left( {7n + 13} \right)\,\, \vdots \,\,d\) suy ra \[2\left( {7n + 13} \right)\,\, \vdots \,\,d\]

Từ \(\left( {2n + 4} \right)\,\, \vdots \,\,d\) suy ra \[7\left( {2n + 4} \right)\,\, \vdots \,\,d\]

Do đó \[\left[ {7\left( {2n + 4} \right) - 2\left( {7n + 13} \right)} \right]\,\, \vdots \,\,d\] hay \[2\,\, \vdots \,\,d\] nên \[d \in \left\{ {1;\,\,2} \right\}.\]

Để \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau thì \(d \ne 2\).

\(2n + 4\) luôn chia hết cho 2 và \(7n + 13\) không chia hết cho 2 khi \(n\) chẵn.

Vậy \(n\) chẵn thì \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP