Câu hỏi:

22/09/2025 47 Lưu

Cho hình vẽ, biết \[AB\,{\rm{//}}\,xy,\] \(\widehat {BAI} = 45^\circ \), \(\widehat {AIF} = 105^\circ \).

Vẽ lại hình và viết giả thiết, kết luận của bài toán. (ảnh 1)

a) Vẽ lại hình và viết giả thiết, kết luận của bài toán.

b) Tính số đo \(\widehat {FIx}\)\(\widehat {FIy}\).

c) Chứng minh \[AB\,{\rm{//}}\,EF\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a)

GT

\(AB\parallel xy\), \(\widehat {BAI} = 45^\circ \), \(\widehat {AIF} = 105^\circ \).

KL

b) \(\widehat {FIx} = ?\); \(\widehat {FIy} = ?\)

c) \[AB\parallel EF\]

b) Vì \(AB\parallel xy\) nên \(\widehat {BAI} = \widehat {AIx} = 45^\circ \) (hai góc so le trong).

Vẽ lại hình và viết giả thiết, kết luận của bài toán. (ảnh 2)

 

Ta có \(\widehat {AIF} = \widehat {AIx} + \widehat {FIx}\).

Suy ra \(\widehat {FIx} = \widehat {AIF} - \widehat {AIx} = 105^\circ - 45^\circ = 60^\circ \).

\(\widehat {FIx}\)\(\widehat {FIy}\) là hai góc kề bù nên \(\widehat {FIx} + \widehat {FIy} = 180^\circ \).

Suy ra \(\widehat {FIy} = 180^\circ - \widehat {FIx} = 180^\circ - 60^\circ = 120^\circ \).

Vậy \(\widehat {FIx} = 60^\circ \); \(\widehat {FIy} = 120^\circ \).

c) Ta thấy \(\widehat {FIy} = \widehat {EFI} = 120^\circ \)\(\widehat {FIy}\)\(\widehat {EFI}\) ở vị trí so le trong.

Do đó\[AB\parallel EF\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \(VT = \left| {2x + 3} \right| + \left| {2x - 1} \right| = \left| {2x + 3} \right| + \left| {1 - 2x} \right| \ge \left| {2x + 3 + 1 - 2x} \right| = 4\).

Ta có \({\left( {x + 1} \right)^2} \ge 0\) suy ra \(3{\left( {x + 1} \right)^2} \ge 0\) nên \(3{\left( {x + 1} \right)^2} + 2 \ge 2\).

Do đó \(VP = \frac{8}{{3{{\left( {x + 1} \right)}^2} + 2}} \le 4\).

Ta thấy \(\left\{ \begin{array}{l}VT \ge 4\\VP \le 4\end{array} \right.\). Mà \(VT = VP\) nên \(VT = VP = 4\).

Khi đó \(\left\{ \begin{array}{l}x + 1 = 0\\\left( {2x + 3} \right)\left( {1 - 2x} \right) > 0\end{array} \right.\) nên \(x = - 1\).

Vậy \(x = - 1\).

Lời giải

Hướng dẫn giải

Ta có \(25 - {y^2} = 8{\left( {x - 2005} \right)^2}\) nên x20052=25y281

\(x,\,y\) là các số nguyên dương và \({\left( {x - 2005} \right)^2} \ge 0\) nên \(\left( 1 \right)\) suy ra \[0 < y \le 5\,;\,\,25 - {y^2} \in B\left( 8 \right).\]

Ta lập bảng sau:

\(y\)

\(1\)

\(2\)

\(3\)

\(4\)

\(5\)

\(25 - {y^2}\)

\(24\)

\(21\)

\(16\)

\(9\)

\(0\)

\({\left( {x - 2005} \right)^2}\)

3

Không thỏa mãn

2

Không thỏa mãn

\(0\)

\(x\)

Không thỏa mãn

Không thỏa mãn

Không thỏa mãn

Không thỏa mãn

\(2005\)

Vậy \(x = 2005\,;\,\,y = 5\) thỏa yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP