Cho hình thang cân \(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\), kẻ đường cao \(AH,BK\) của hình thang, biết \(AB = 2{\rm{ cm; }}AH = 4{\rm{ cm; }}\widehat D = 45^\circ \).
Tính diện tích của hình thang cân \(ABCD\). (Đơn vị: \({\rm{c}}{{\rm{m}}^{\rm{2}}}\)).
Cho hình thang cân \(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\), kẻ đường cao \(AH,BK\) của hình thang, biết \(AB = 2{\rm{ cm; }}AH = 4{\rm{ cm; }}\widehat D = 45^\circ \).

Tính diện tích của hình thang cân \(ABCD\). (Đơn vị: \({\rm{c}}{{\rm{m}}^{\rm{2}}}\)).
Quảng cáo
Trả lời:
Đáp án: 24
Vì tam giác vuông \(AHD\) có \(\widehat {ADH} = 45^\circ \) nên \(\Delta AHD\) là tam giác vuông cân.
Do đó, \(HD = HA = 4{\rm{ cm}}\).
Ta có \(ABHK\) là hình bình hành \(\left( {AB\parallel HK} \right)\) có \(\widehat {AHK} = \widehat {HKB} = 90^\circ \), do đó \(ABHK\) là hình chữ nhật.
Suy ra \(AH = BK = 4{\rm{ cm,}}\) \(AB = HK = 2{\rm{ cm}}{\rm{.}}\)
Vì \(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\) là hình thang cân nên \(\widehat {ADH} = \widehat {BCK} = 45^\circ \).
Do đó, \(\Delta BKC\) cũng là tam giác vuông cân nên \(KB = KC = 4{\rm{ cm}}\).
Ta có: \(DC = DH + HK + KC = 4 + 2 + 4 = 10{\rm{ }}\left( {{\rm{cm}}} \right).\)
Vậy diện tích hình thang cân \(ABCD\) là: \(\frac{{\left( {AB + DC} \right) \cdot AH}}{2} = \frac{{\left( {2 + 10} \right) \cdot 4}}{2} = 24{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
Theo đề, ta có: \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (giả thiết) (1)
Lại có: \(\widehat {EDC} + \widehat {ADC} = 180^\circ \) (hai góc kề bù) (2)
Từ (1) và (2) suy ra \(\widehat {ABC} = \widehat {EDC}\).
b) Sai.
Xét \(\Delta ABC\) và \(\Delta DEC\), có:
\(AB = DE\) (gt)
\(BC = DE\) (gt)
\(\widehat {ABC} = \widehat {EDC}\) (cmt)
Do đó, \(\Delta ABC = \Delta EDC\) (c.g.c).
c) Đúng.
Vì \(\Delta ABC = \Delta EDC\) (cmt) nên \(AC = EC\) (hai cạnh tương ứng).
Do đó, \(\Delta CAE\) là tam giác cân tại \(C\).
d) Đúng.
Vì \(\Delta CAE\) là tam giác câm tại \(C\) nên \(\widehat {CEA} = \widehat {CAE}\) (*)
Lại có \(\Delta ABC = \Delta EDC\) nên \(\widehat {BAC} = \widehat {DEC}\) (**)
Từ (*) và (**) suy ra \(\widehat {BAC} = \widehat {CAE}\).
Do đó, \(AC\) là tia phân giác của \(\widehat {BAD}\).
Lời giải

a) Đúng.
Ta có: \(AB = AD\) (vì \(ABCD\) là hình thoi) và \(\widehat A = 60^\circ \).
Suy ra \(\Delta ABD\) là tam giác đều.
Mà \(BH\) là đường cao trong \(\Delta ABD\) nên đồng thời là đường trung tuyến do đó \(H\) là trung điểm của \(AD\).
b) Đúng.
Xét tứ giác \(ABDE\) có hai đường chéo \(BE\) và \(AD\) cắt nhau tại trung điểm \(H\) của mỗi đường.
Do đó, \(ABDE\) là hình bình hành.
Mặt khác \(AD \bot BE\) nên \(ABDE\) là hình thoi.
c) Đúng.
Ta có:
\(ABCD\) là hình thoi suy ra \(DC = AB,DC\parallel AB\). (1)
\(ABDE\) là hình thoi suy ra \(DE = AB,DE\parallel AB\). (2)
Từ (1) và (2) suy ra \(C,D,E\) thẳng hàng (tiền đề Euclid) và \(DC = DE.\)
Vậy \(D\) là trung điểm của \(CE\).
d) Sai.
Kẻ hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(I\).
Suy ra \(AC\) vuông góc \(BD\) tại trung điểm \(I\) của mỗi đường (Do \(ABCD\) là hình thoi).
Ta có: \(AC = 2AI\) (vì \(I\) là trung điểm của \(AC\)).
\(BE = 2BH\) (vì \(H\) là trung điểm của \(BE\)).
Mà \(BH = AI\) (Chứng minh \(\Delta BHA = \Delta AIB\) (ch – gn)) suy ra \(AC = BE.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(125^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(ABCD\) là hình bình hành.
B. \(\Delta ABC = \Delta CDA\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

