Câu hỏi:

22/09/2025 80 Lưu

Cho hình thang cân \(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\), kẻ đường cao \(AH,BK\) của hình thang, biết \(AB = 2{\rm{ cm; }}AH = 4{\rm{ cm; }}\widehat D = 45^\circ \).

Cho hình thang cân ABCD (AB // CD), kẻ đường cao AH,BK của hình thang, biết AB = 2 cm (ảnh 1)

Tính diện tích của hình thang cân \(ABCD\). (Đơn vị: \({\rm{c}}{{\rm{m}}^{\rm{2}}}\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 24

Vì tam giác vuông \(AHD\)\(\widehat {ADH} = 45^\circ \) nên \(\Delta AHD\) là tam giác vuông cân.

Do đó, \(HD = HA = 4{\rm{ cm}}\).

Ta có \(ABHK\) là hình bình hành \(\left( {AB\parallel HK} \right)\)\(\widehat {AHK} = \widehat {HKB} = 90^\circ \), do đó \(ABHK\) là hình chữ nhật.

Suy ra \(AH = BK = 4{\rm{ cm,}}\) \(AB = HK = 2{\rm{ cm}}{\rm{.}}\)

\(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\) là hình thang cân nên \(\widehat {ADH} = \widehat {BCK} = 45^\circ \).

Do đó, \(\Delta BKC\) cũng là tam giác vuông cân nên \(KB = KC = 4{\rm{ cm}}\).

Ta có: \(DC = DH + HK + KC = 4 + 2 + 4 = 10{\rm{ }}\left( {{\rm{cm}}} \right).\)

Vậy diện tích hình thang cân \(ABCD\) là: \(\frac{{\left( {AB + DC} \right) \cdot AH}}{2} = \frac{{\left( {2 + 10} \right) \cdot 4}}{2} = 24{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 99

Cho tứ giác ABCD có AB // CD, góc ABC = 135 độ , góc ACB = 24 độ , góc ADC = 60 độ (ảnh 1)

Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(ABC\) ta có;

\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \), suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 21^\circ \).

\(AB\parallel CD\) nên \(\widehat {BAC} = \widehat {ACD} = 21^\circ \) (so le trong).

Xét tam giác \(ACD\) có: \(\widehat {ACD} + \widehat {ADC} + \widehat {CAD} = 180^\circ \) (tổng ba góc trong một tam giác).

Do đó, \(\widehat {CAD} = 180^\circ - \left( {\widehat {ACD} + \widehat {ADC}} \right) = 180^\circ - \left( {60^\circ + 21^\circ } \right) = 99^\circ \).

Vậy \(\widehat {DAC} = 99^\circ \).

Lời giải

a) Đúng.

Theo đề, ta có: \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (giả thiết) (1)

Lại có: \(\widehat {EDC} + \widehat {ADC} = 180^\circ \) (hai góc kề bù) (2)

Từ (1) và (2) suy ra \(\widehat {ABC} = \widehat {EDC}\).

b) Sai.

Xét \(\Delta ABC\)\(\Delta DEC\), có:

\(AB = DE\) (gt)

\(BC = DE\) (gt)

\(\widehat {ABC} = \widehat {EDC}\) (cmt)

Do đó, \(\Delta ABC = \Delta EDC\) (c.g.c).

c) Đúng.

\(\Delta ABC = \Delta EDC\) (cmt) nên \(AC = EC\) (hai cạnh tương ứng).

Do đó, \(\Delta CAE\) là tam giác cân tại \(C\).

d) Đúng.

\(\Delta CAE\) là tam giác câm tại \(C\) nên \(\widehat {CEA} = \widehat {CAE}\) (*)

Lại có \(\Delta ABC = \Delta EDC\) nên \(\widehat {BAC} = \widehat {DEC}\) (**)

Từ (*) và (**) suy ra \(\widehat {BAC} = \widehat {CAE}\).

Do đó, \(AC\) là tia phân giác của \(\widehat {BAD}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(125^\circ .\)                    

B. \(65^\circ .\)           
C. \(90^\circ .\)          
D. \(55^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tứ giác có hai cặp cạnh đối song song là hình bình hành.

B. Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành.

C. Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

D. Hình thang có hai đường chéo bằng nhau là hình bình hành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP