Quảng cáo
Trả lời:

g) \(0,2 + \left| {x - 2,3} \right| = 1,1\)
\(\left| {x - 2,3} \right| = 1,1 - 0,2\)
\(\left| {x - 2,3} \right| = 0,9\)
TH1: \(x - 2,3 = 0,9\)
\(x = 0,9 + 2,3\)
\(x = 3,2\).
TH2: \(x - 2,3 = - 0,9\)
\(x = - 0,9 + 2,3\)
\(x = 1,4\).
\(x \in \left\{ {3,2\,;\,\,1,4} \right\}\).Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ đường thẳng qua \(C\) và song song với \[AB\].
Mà \(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].
Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \) và \(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)
Do đó, \[{\widehat C_1} = 60^\circ \] và \[\,{\widehat C_2} = 45^\circ \].
Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].
Lời giải
Hình a) ta có: \(\widehat A = 45^\circ \) và \(\widehat B = 45^\circ \) nên \(\widehat A = \widehat B\) mà hai góc này nằm ở vị trí so le trong nên suy ra:
\(m\parallel n\).
Hình b) ta có: \(\widehat M = 60^\circ \) và \(\widehat N = 60^\circ \) nên \(\widehat M = \widehat N\) mà hai góc này nằm ở vị trí so le trong nên suy ra: \(a\parallel b\).
Hình c) không có hai đường thẳng nào song song với nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.