Câu hỏi:

23/09/2025 14 Lưu

Biểu đồ hình quạt sau đây biểu diễn kết quả đánh giá xếp loại học sinh cuối học kì I của học sinh khối 7. Quan sát các dữ liệu trên biểu đồ và trả lời các câu hỏi sau đây:

Tỉ lệ học sinh xếp loại Đạt của khối 7. (ảnh 1)

a) Tỉ lệ học sinh xếp loại Đạt của khối 7.

b) Số học sinh xếp loại Giỏi gấp bao nhiêu lần số học sinh xếp loại Yếu?

c) Tổng số học sinh xếp loại Khá, Giỏi chiếm bao nhiêu phần trăm tổng số học sinh khối 7?

d) Biết khối 7 có 350 học sinh. Tính số học sinh xếp loại Giỏi của khối 7.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Tỉ lệ học sinh xếp loại Đạt của khối 7 là: \(100 - 46 - 28 - 2 = 24\left( \% \right)\)

b) Số học sinh xếp loại Giỏi gấp số lần học sinh xếp loại Yếu là: \(28:2 = 14\) (lần).

c) Tổng số học sinh xếp loại Khá, Giới chiếm số phần trăm so với học sinh khối 7 là: \(46 + 28 = 74\% \)

d) Số học sinh khối 7 xếp loại Giỏi là: \(28\% .350 = 98\) (học sinh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Chứng minh \(DE \bot BC\). (ảnh 1)

a) \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).

Xét \(\Delta ACD\) \(\Delta ECD\) có:

\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.

Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).

Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\).

b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)

\(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).

Xét \(\Delta CAD\)\(\Delta ACM\) có:

\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).

Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).

Suy ra (hai cạnh tương ứng).

c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:

\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)

Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)

Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).

Xét tam giác \(NBD\) và tam giác \(NKD\) có:

\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.

Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).

Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)

d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:

\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].

Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)

Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)

Suy ra \(KE \bot BC\).

\(DE \bot AC\).

Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.