Bạn Na muốn tạo một trang web để kết bạn. Trang web nhận được 3 lần truy cập trong tuần đầu tiên. Nếu lượng truy cập tăng lên gấp 3 lần sau mỗi tuần tiếp theo thì tới tuần thứ 6 trang web của Na có tất cả bao nhiêu lượt truy cập?
Bạn Na muốn tạo một trang web để kết bạn. Trang web nhận được 3 lần truy cập trong tuần đầu tiên. Nếu lượng truy cập tăng lên gấp 3 lần sau mỗi tuần tiếp theo thì tới tuần thứ 6 trang web của Na có tất cả bao nhiêu lượt truy cập?
Quảng cáo
Trả lời:

Hướng dẫn giải
Trong tuần thứ hai, trang web có số lượt truy cập là: \(3 \cdot 3 = {3^2}\) (lượt)
Trong tuần thứ ba, trang web có số lượt truy cập là: \({3^2} \cdot 3 = {3^3}\) (lượt)
Trong tuần thứ tư, trang web có số lượt truy cập là: \({3^3} \cdot 3 = {3^4}\) (lượt)
Trong tuần thứ năm, trang web có số lượt truy cập là: \({3^4} \cdot 3 = {3^5}\) (lượt)
Trong tuần thứ sáu, trang web có số lượt truy cập là: \({3^5} \cdot 3 = {3^6}\) (lượt)
Vậy tới tuần thứ 6, trang web của Na có số lượt truy cập là: \(3 + {3^2} + {3^3} + {3^4} + {3^5} + {3^6} = 1{\rm{ }}092\) (lượt).
Vậy tới tuần thứ 6 thì trang web của Na có tất cả 1 092 lượt truy cập.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ đường thẳng qua \(C\) và song song với \[AB\].
Mà \(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].
Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \) và \(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)
Do đó, \[{\widehat C_1} = 60^\circ \] và \[\,{\widehat C_2} = 45^\circ \].
Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].
Lời giải
a) Vì \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).
Xét \(\Delta ACD\) và \(\Delta ECD\) có:
\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.
Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).
Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)
Suy ra \(DE \bot BC\).
b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)
Vì \(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).
Xét \(\Delta CAD\) và \(\Delta ACM\) có:
\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).
Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).
Suy ra (hai cạnh tương ứng).
c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:
\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)
Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)
Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).
Xét tam giác \(NBD\) và tam giác \(NKD\) có:
\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.
Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).
Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)
d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:
\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].
Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)
Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)
Suy ra \(KE \bot BC\).
Mà \(DE \bot AC\).
Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.