Câu hỏi:

23/09/2025 15 Lưu

Cho hình vẽ bên có \[\widehat {xOM} = \widehat {yON} = 30^\circ ,\,\,OI\] là tia phân giác của góc \[MON\]. Hai đường thẳng \[OI,xy\] có vuông góc với nhau hay không?
Cho hình vẽ bên có \[\widehat {xOM} = \widehat {yON} = 30^\circ ,\,\,OI\] là tia phân giác của góc \[MON\]. Hai đường thẳng  \[OI,xy\] có vuông góc với nhau hay không?   (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

\(\widehat {xOM}\)\(\widehat {MON}\) là hai góc kề nhau nên ta có: \(\widehat {xOM} + \widehat {MON} = \widehat {xON}\)

\(\widehat {xON}\) \(\widehat {NOy}\)là hai góc kề bù nên ta có: \(\widehat {xON} + \widehat {NOy} = \widehat {xOy} = 180^\circ \)

Do đó \(\widehat {xOM} + \widehat {MON} + \widehat {NOy} = 180^\circ \)

Suy ra \(\widehat {MON} = 180^\circ - \widehat {xOM} - \widehat {NOy}\)

Nên \(\widehat {MON} = 180^\circ - 30^\circ - 30^\circ = 120^\circ \)

\(OI\) là tia phân giác của \(\widehat {MON}\) nên ta có: \(\widehat {MOI} = \widehat {ION} = \frac{1}{2}\widehat {MON} = \frac{1}{2} \cdot 120^\circ = 60^\circ \).

\(\widehat {xOM}\)\(\widehat {MOI}\) là hai góc kề nhau nên ta có: \(\widehat {xOM} + \widehat {MOI} = \widehat {xOI}\)

Suy ra \(\widehat {xOI} = 30^\circ + 60^\circ = 90^\circ \)

Do đó \(Ox\) vuông góc với \(OI\) nên \(OI\) vuông góc với \(xy\).

Vậy \(OI\) vuông góc với \(xy\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Chứng minh \(DE \bot BC\). (ảnh 1)

a) \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).

Xét \(\Delta ACD\) \(\Delta ECD\) có:

\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.

Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).

Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\).

b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)

\(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).

Xét \(\Delta CAD\)\(\Delta ACM\) có:

\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).

Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).

Suy ra (hai cạnh tương ứng).

c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:

\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)

Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)

Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).

Xét tam giác \(NBD\) và tam giác \(NKD\) có:

\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.

Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).

Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)

d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:

\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].

Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)

Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)

Suy ra \(KE \bot BC\).

\(DE \bot AC\).

Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP