Câu hỏi:

23/09/2025 23 Lưu

Cho hình vẽ sau.

Cho hình vẽ sau.    a) Chứng minh \(a\parallel b\). b) Tính số đo góc \(C\). (ảnh 1)

a) Chứng minh \(a\parallel b\).

b) Tính số đo góc \(C\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Theo bài cho ta có: \(a \bot AB\) tại \(A\)\(b \bot AB\) tại \(B\) nên \(a\parallel b\).

b) Ta có \(\widehat {ADC} + \widehat {aDC} = 180^\circ \) (hai góc kề bù) hay \(\widehat {aDC} = 180^\circ - \widehat {ADC}\).

\(\widehat {ADC} = 120^\circ \) (gt) nên \(\widehat {aDC} = 180^\circ - 120^\circ = 60^\circ \).

\(a\parallel b\) (cmt) nên \(\widehat {aDC} = \widehat {BCD}\) (hai góc so le trong).

Mặt khác \(\widehat {aDC} = 60^\circ \) (cmt) suy ra \(\widehat {BCD} = 60^\circ \).

Vậy \(\widehat {BCD} = 60^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Hình a) ta có: \(\widehat A = 45^\circ \)\(\widehat B = 45^\circ \) nên \(\widehat A = \widehat B\) mà hai góc này nằm ở vị trí so le trong nên suy ra:

\(m\parallel n\).

Hình b) ta có: \(\widehat M = 60^\circ \)\(\widehat N = 60^\circ \) nên \(\widehat M = \widehat N\) mà hai góc này nằm ở vị trí so le trong nên suy ra: \(a\parallel b\).

Hình c) không có hai đường thẳng nào song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP