Câu hỏi:

23/09/2025 39 Lưu

Cho tam giác \[ABC\] nhọn. Gọi \[M\] là trung điểm của \[AC\]. Trên tia đối của tia \[MB\] lấy điểm \[D\] sao cho \[MD = MB\].

a) Chứng minh \[\Delta AMB = \Delta CMD\].

b) Chứng minh \[AD\parallel BC\].

c) Kẻ \[{\rm{MH}} \bot {\rm{AB}}\]\[{\rm{MK}} \bot {\rm{DC}}\]. Chứng minh \[{\rm{M}}\] là trung điểm của \[{\rm{HK}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Chứng minh \[\Delta AMB = \Delta CMD\]. (ảnh 1)

a) Xét \[\Delta AMB\]\[\Delta CMD\] có:

\[MD = MB\] (giả thiết)

\[\widehat {AMB} = \widehat {CMD}\] (2 góc đối đỉnh)

\[MA = MC\] (giả thiết)

Suy ra \[\Delta AMB = \Delta CMD\] (c.g.c)

b) Xét \[\Delta AMD\]\[\Delta CMB\] có: \[MD = MB\] (giả thiết), \[\widehat {AMD} = \widehat {CMB}\] (đối đỉnh), \[MA = MC\] (giả thiết)

Vậy \[\Delta AMD = \Delta CMB\] (c.g.c) suy ra \[\widehat {ADM} = \widehat {CBM}\] (hai góc tương ứng), mà hai góc này lại ở vị trí sole trong nên \[AD\,{\rm{//}}\,BC\] (dấu hiệu nhận biết)

c) Ta có: \[\Delta AMB = \Delta CMD\] (chứng minh trên) suy ra \[\widehat {MAB} = \widehat {MCD}\] (hai góc tương ứng) mà hai góc này lại ở vị trí sole trong nên \[AB\,{\rm{//}}\,\,CD\] (1)

Ta lại có: \[MH \bot AB\] (giả thiết) (2). Từ (1) và (2) suy ra \[MH \bot CD\]\[MK \bot DC\] (giả thiết) suy ra 3 điểm \[H,M,K\] thẳng hàng (định lý)

Xét \[\Delta AMH\]\[\Delta CMK\] có:

\[\widehat {AHM} = \widehat {MKC} = 90^\circ \] (giả thiết)

\[AM = MC\] (giả thiết)

\[\widehat {AMH} = \widehat {CMK}\] (đối đỉnh)

Vậy \[\Delta AMH = \Delta CMK\] (ch – gn) suy ra \[AM = MC\] hay \[M\] là trung điểm \[HK\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Hình a) ta có: \(\widehat A = 45^\circ \)\(\widehat B = 45^\circ \) nên \(\widehat A = \widehat B\) mà hai góc này nằm ở vị trí so le trong nên suy ra:

\(m\parallel n\).

Hình b) ta có: \(\widehat M = 60^\circ \)\(\widehat N = 60^\circ \) nên \(\widehat M = \widehat N\) mà hai góc này nằm ở vị trí so le trong nên suy ra: \(a\parallel b\).

Hình c) không có hai đường thẳng nào song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP