Cho tam giác \(ABC\) có \(AB < AC\). Kẻ tia phân giác \(AD\) của góc \(BAC\) (\(D\) thuộc cạnh \(BC\)). Trên cạnh \(AC\) lấy điểm \(E\) sao cho \(AE = AB\), trên tia \(AB\) lấy điểm \(F\) sao cho \(AF = AC\). Chứng minh rằng:
a) \[\Delta BDF = \Delta EDC\].
b) điểm \(F,\,D,\,E\) thẳng hàng
c) \(AD\) là đường trung trực của \(BE\) và \(CF\).
Cho tam giác \(ABC\) có \(AB < AC\). Kẻ tia phân giác \(AD\) của góc \(BAC\) (\(D\) thuộc cạnh \(BC\)). Trên cạnh \(AC\) lấy điểm \(E\) sao cho \(AE = AB\), trên tia \(AB\) lấy điểm \(F\) sao cho \(AF = AC\). Chứng minh rằng:
a) \[\Delta BDF = \Delta EDC\].
b) điểm \(F,\,D,\,E\) thẳng hàng
c) \(AD\) là đường trung trực của \(BE\) và \(CF\).
Quảng cáo
Trả lời:

a) Chứng minh \(\Delta BDF = \Delta EDC\).
Vì \(AD\) là phân giác \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}\).
Xét \(\Delta ADF\) và \(\Delta ADC\) có:
\(AF = AC\,;\,\,\widehat {FAD} = \widehat {CAD}\,;\,\,AD\) chung.
Do đó \(\Delta ADF = \Delta ADC\) (c.g.c)
Suy ra \(\widehat {AFD} = \widehat {ACD}\) (hai góc tương ứng) và \(FD = CD\) (hai cạnh tương ứng)
Vì \(AF = AC\,;\,\,AB = AE\) suy ra \(BF = EC\)
Xét tam giác \(BDF\) và tam giác \(EDC\) có:
\(BF = EC\,;\,\,\,\widehat {BFD} = \widehat {ECD}\,;\,\,\,FD = CD\).
Do đó \(\Delta BDF = \Delta EDC\) (c.g.c)
b) Theo câu a) \(\Delta BDF = \Delta EDC\) suy ra \(\widehat {BDF} = \widehat {ECD}\).
Mà \(\widehat {BDE} + \widehat {EDC} = 180^\circ \) (hai góc kề bù) nên\(\widehat {BDE} + \widehat {FDB} = 180^\circ \), do đó \(\widehat {FDE} = 180^\circ \).
Suy ra ba điểm \(F,\,D,\,E\) thẳng hàng.
c) Gọi \(G,\,H\) theo thứ tự là giao điểm của \(AD\) và \(BE,\,CF\).
Xét tam giác \(ABG\) và \(AEG\) có:
\(AB = AE\,;\,\,\widehat {BAG} = \widehat {EAG}\,;\,\,AG\) chung.
Suy ra \(\Delta ABG = \Delta AEG\) (c.g.c)
Do đó, \(\widehat {AGB} = \widehat {AGE}\) (hai góc tương ứng) và \(GB = GE\) (hai cạnh tương ứng) (1)
Mà \(\widehat {AGB} + \widehat {AGE} = 180^\circ \) suy ra \(\widehat {AGB} = \widehat {AGE} = 90^\circ \) (2)
Từ (1) và (2) suy ra \(AD\) là đường trung trực \(BE\).
Chứng minh tương tự ta có \(AD\) là đường trung trực \(CF\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ đường thẳng qua \(C\) và song song với \[AB\].
Mà \(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].
Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \) và \(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)
Do đó, \[{\widehat C_1} = 60^\circ \] và \[\,{\widehat C_2} = 45^\circ \].
Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].
Lời giải
Hướng dẫn giải
a) Số tiền cả gốc và lãi mà bác Hoa thu được ở ngân hàng A sau một năm là:
\(70 \cdot 5,6\% + 70 = 73,92\) (triệu đồng)
Số tiền cả gốc và lãi bác Hoa thu được ở ngân hàng B sau một năm là:
\(50 \cdot 6,5\% + 50 = 53,25\) (triệu đồng)
Số tiền cả gốc và lãi mà bác Hoa thu được ở hai ngân hàng sau một năm là:
\(73,92 + 53,25 = 127,17\) (triệu đồng)
b) Số tiền cả gốc và lãi mà bác Hoa thu được ở một ngân hàng A ở năm thứ hai là:
\(\left( {73,92 - 73,92 \cdot 60\% } \right) \cdot 5,5\% - \left( {73,92 - 73,92 \cdot 60\% } \right) \approx 31,14\) (triệu đồng)
Số tiền cả gốc và lãi mà bác Hoa thu được ở ngân hàng B sau một năm là:
\(97,602 + 97,602 \cdot 6,8\% \approx 104,24\) (triệu đồng)
Số tiền cả gốc và lãi mà bác Hoa thu được ở hai ngân hàng sau hai năm là:
\(127,17 + 104,24 + 31,14 = 262,55\) (triệu đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




