Câu hỏi:

23/09/2025 20 Lưu

Cho \(\Delta ABC\) vuông tại \(A\) \(\left( {AB > AC} \right)\) tại \(C\). Tia phân giác góc \(ACB\) cắt cạnh \(AB\) tại \(D.\) Trên cạnh \(BC\) lấy điểm \(E\) sao cho \(CE = CA\).

a) Chứng minh \(DE \bot BC\).

b) Vẽ đường thẳng \(d\) vuông góc với \(AC\) tại \(C\). Qua \(A\) vẽ đường thẳng song song với \(CD\) cắt \(d\) tại \(M\). Chứng minh \(AM = CD\).

c) Qua \(B\) vẽ đường thẳng vuông góc với \(CD\) tại \(N\) cắt \(AC\) tại \(K\). Chứng minh \(KE \bot BC\) và ba điểm \(K,\,D,\,E\) thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chứng minh \(DE \bot BC\). (ảnh 1)

a) \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).

Xét \(\Delta ACD\) \(\Delta ECD\) có:

\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.

Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).

Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\).

b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)

\(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).

Xét \(\Delta CAD\)\(\Delta ACM\) có:

\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).

Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).

Suy ra (hai cạnh tương ứng).

c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:

\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)

Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)

Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).

Xét tam giác \(NBD\) và tam giác \(NKD\) có:

\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.

Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).

Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)

d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:

\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].

Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)

Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)

Suy ra \(KE \bot BC\).

\(DE \bot AC\).

Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Hướng dẫn giải

Chứng minh \[\Delta AMB = \Delta CMD\]. (ảnh 1)

a) Xét \[\Delta AMB\]\[\Delta CMD\] có:

\[MD = MB\] (giả thiết)

\[\widehat {AMB} = \widehat {CMD}\] (2 góc đối đỉnh)

\[MA = MC\] (giả thiết)

Suy ra \[\Delta AMB = \Delta CMD\] (c.g.c)

b) Xét \[\Delta AMD\]\[\Delta CMB\] có: \[MD = MB\] (giả thiết), \[\widehat {AMD} = \widehat {CMB}\] (đối đỉnh), \[MA = MC\] (giả thiết)

Vậy \[\Delta AMD = \Delta CMB\] (c.g.c) suy ra \[\widehat {ADM} = \widehat {CBM}\] (hai góc tương ứng), mà hai góc này lại ở vị trí sole trong nên \[AD\,{\rm{//}}\,BC\] (dấu hiệu nhận biết)

c) Ta có: \[\Delta AMB = \Delta CMD\] (chứng minh trên) suy ra \[\widehat {MAB} = \widehat {MCD}\] (hai góc tương ứng) mà hai góc này lại ở vị trí sole trong nên \[AB\,{\rm{//}}\,\,CD\] (1)

Ta lại có: \[MH \bot AB\] (giả thiết) (2). Từ (1) và (2) suy ra \[MH \bot CD\]\[MK \bot DC\] (giả thiết) suy ra 3 điểm \[H,M,K\] thẳng hàng (định lý)

Xét \[\Delta AMH\]\[\Delta CMK\] có:

\[\widehat {AHM} = \widehat {MKC} = 90^\circ \] (giả thiết)

\[AM = MC\] (giả thiết)

\[\widehat {AMH} = \widehat {CMK}\] (đối đỉnh)

Vậy \[\Delta AMH = \Delta CMK\] (ch – gn) suy ra \[AM = MC\] hay \[M\] là trung điểm \[HK\].