Câu hỏi:

23/09/2025 17 Lưu

Cho \[\Delta ABC\]\[AB = AC\], \[M\] là trung điểm của \[BC\]. Trên tia đối của tia \[MA\] lấy điểm \[D\] sao cho \[AM = MD\].

a) Chứng minh rằng \(\Delta ABM = \Delta DCM\).

b) Chứng minh \(AB\parallel DC\).

c) Chứng minh \(AM \bot BC\).

d) Tìm điều kiện của \(\Delta ABC\) để góc \(\widehat {ADC} = 45^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chứng minh rằng \(\Delta ABM = \Delta DCM\). (ảnh 1)

a) Xét \(\Delta ABM\)\(\Delta DCM\), có:

\[AM = MD\] (gt)

\[\widehat {BMA} = \widehat {CMD}\] (đối đỉnh)

\[BM = MC\] (gt)

Do đó, \(\Delta ABM = \Delta DCM\) (c.g.c)

b) Từ phần a, có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(\widehat {ABM} = \widehat {DCM}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong, suy ra \(AB\parallel DC\).

c) Xét \[\Delta ABC\]\[AB = AC\] nên \[\Delta ABC\] cân tại \[A\].

Mà có \[M\] là trung điểm của \[BC\] nên \[AM\] là đường cao của \[\Delta ABC\].

Suy ra \(AM \bot BC\).

d) Từ a) có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(AB = DC\) (2 cạnh tương ứng).

\[AB = AC\] nên \[AC = CD\], suy ra \(\Delta CAD\) cân tại \(C\).

Suy ra \(\widehat {ADC} = \widehat {CAD} = 45^\circ \).

\(\widehat {BAC} = 2\widehat {CAD} = 90^\circ \) (\[AM\] vừa là đường cao, vừa là đường phân giác \(\widehat {BAC}\)).

Lúc này \[\Delta ABC\] là tam giác vuông cân tại \[A\].

Vậy để góc \(\widehat {ADC} = 45^\circ \) thì \[\Delta ABC\] là tam giác vuông cân tại \[A\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Chứng minh \(DE \bot BC\). (ảnh 1)

a) \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).

Xét \(\Delta ACD\) \(\Delta ECD\) có:

\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.

Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).

Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\).

b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)

\(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).

Xét \(\Delta CAD\)\(\Delta ACM\) có:

\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).

Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).

Suy ra (hai cạnh tương ứng).

c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:

\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)

Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)

Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).

Xét tam giác \(NBD\) và tam giác \(NKD\) có:

\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.

Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).

Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)

d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:

\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].

Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)

Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)

Suy ra \(KE \bot BC\).

\(DE \bot AC\).

Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.