Câu hỏi:

03/10/2025 90 Lưu

Cho tứ diện \[ABCD\]\[AB = AC = AD\]\(\widehat {BAC} = \widehat {BAD} = 60^\circ \). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \)\(\overrightarrow {CD} \)?

A. \[60^\circ \].         
B. \[45^\circ \].       
C. \[120^\circ \].            
D. \[90^\circ \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Cho tứ diện \[ABCD\] có \[AB = AC = AD\] và \(\widehat {BAC} = \widehat {BAD} = 60^\circ \). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \)? A. \[60^\circ \].	B. \[45^\circ \].	C. \[120^\circ \].	D. \[90^\circ \]. (ảnh 1)

Ta có: \(\overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } \right) = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  = AB.AD.\cos 60^\circ  - AB.AC.\cos 60^\circ  = 0\)

\( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = 90^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

\({\left( {3\overrightarrow a  + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b  + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a  + 5\overrightarrow b } \right| = \sqrt {124} \).

Lời giải

Gọi \(D\left( {x;y;z} \right)\) là vị trí của máy bay sau 10 phút bay tiếp theo (tính từ thời điểm máy bay ở điểm \(B\)). Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BD} \) cùng hướng. Do vận tốc máy bay không đổi và thời gian bay từ \(A\) đến \(B\) bằng thời gian bay từ \[B\] đến \(D\) nên \(AB = BD\).

Do đó, \(\overrightarrow {BD}  = \overrightarrow {AB}  = \left( {140;50;1} \right)\).

Mặt khác: \(\overrightarrow {BD}  = \left( {x - 940;y - 550;z - 8} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 140}\\{y - 550 = 50}\\{z - 8 = 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1080}\\{y = 600}\\{z = 9}\end{array}} \right.} \right.\).

Vậy \(D\left( {1080;600;9} \right)\). Vậy tọa độ của máy bay trong 10 phút tiếp theo là \(\left( {1080;600;9} \right)\).

Suy ra \(x + y + z = 1689\).

Đáp án: 1689.