Một phòng học có thiết kế dạng hình hộp chữ nhật \(ABCD.A'B'C'D'\) với \(AB = 6{\rm{\;m}},AD = 7{\rm{\;m}},\)\(AA' = 3,5{\rm{\;m}}\). Một bóng đèn được treo ở vị trí chính giữa trần nhà của phòng học và cách trần nhà \(0,5{\rm{\;m}}\). Chọn hệ trục tọa độ Oxyz sao cho gốc \(O\) trùng với điểm \(A\), các điểm \(B,D,A'\) lần lượt nằm trên các tia \(Ox,Oy,Oz\).

a) Điểm \(D\) có toạ độ là \(\left( {0;7;0} \right)\).
b) Các điểm C, D có tung độ bằng nhau.
c) Vectơ \(\overrightarrow {C'D'} \) có tọa độ \(\left( {6;0;0} \right)\)
d) Bóng đèn nằm tại vị trí có tọa độ \(\left( {3;3,5;3,5} \right)\).
Một phòng học có thiết kế dạng hình hộp chữ nhật \(ABCD.A'B'C'D'\) với \(AB = 6{\rm{\;m}},AD = 7{\rm{\;m}},\)\(AA' = 3,5{\rm{\;m}}\). Một bóng đèn được treo ở vị trí chính giữa trần nhà của phòng học và cách trần nhà \(0,5{\rm{\;m}}\). Chọn hệ trục tọa độ Oxyz sao cho gốc \(O\) trùng với điểm \(A\), các điểm \(B,D,A'\) lần lượt nằm trên các tia \(Ox,Oy,Oz\).

a) Điểm \(D\) có toạ độ là \(\left( {0;7;0} \right)\).
b) Các điểm C, D có tung độ bằng nhau.
c) Vectơ \(\overrightarrow {C'D'} \) có tọa độ \(\left( {6;0;0} \right)\)
d) Bóng đèn nằm tại vị trí có tọa độ \(\left( {3;3,5;3,5} \right)\).
Quảng cáo
Trả lời:
a) Đúng. Có điểm A trùng với gốc tọa độ \({\rm{O}},D \in Oy \Rightarrow D\left( {0;{y_D};0} \right)\).
Mà \(AD = 7\), suy ra \({y_D} = 7\) hay \(D\left( {0;7;0} \right)\).
b) Đúng. Các điểm \(C,D\) có tung độ bằng nhau và bằng 7.
c) Sai. Ta có tọa độ điểm \(D'\left( {0;7;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\).
Suy ra vectơ \(\overline {C'D'} \left( { - 6;0;0} \right)\).
d) Sai. Ta có điểm \(A'\left( {0;0;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\).
Tọa độ trung điểm của \(A'{\rm{C'}}\) là \(\left( {\frac{{6 + 0}}{2};\frac{{7 + 0}}{2};\frac{{3,5 + 3,5}}{2}} \right) = \left( {3;3,5;3,5} \right)\).
Mà bóng đèn được treo cách trần nhà \(0,5{\rm{\;m}}\).
Vậy bóng đèn nằm tại vị trí có toạ độ \(\left( {3;3,5;3} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
\({\left( {3\overrightarrow a + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a + 5\overrightarrow b } \right| = \sqrt {124} \).
Lời giải
Lấy các điểm \(M,N,P,Q\)lần lượt trên các tia \(EA,EB,EC,ED\) sao cho
\(\overrightarrow {EM} = \overrightarrow {{F_1}} ,\overrightarrow {EN} = \overrightarrow {{F_2}} ,\overrightarrow {EP} = \overrightarrow {{F_3}} ,\overrightarrow {EQ} = \overrightarrow {{F_4}} {\rm{. }}\)
Do các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) nên \(EM = EN = EP = EQ = 4700\).

a) Sai. Ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {EM} + \overrightarrow {EN} = 2\overrightarrow {EH} \), với \(H\) là trung điểm của \(MN\).
\(\overrightarrow {{F_3}} + \overrightarrow {{F_4}} = \overrightarrow {EP} + \overrightarrow {EQ} = 2\overrightarrow {EK} \), với \(K\) là trung điểm của \[PQ\] suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \ne \overrightarrow {{F_3}} + \overrightarrow {{F_4}} \).
b) Đúng. Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {EM} + \overrightarrow {EP} = 2\overrightarrow {EO} \), với \(O\) là trung điểm của \(MP\).
\(\overrightarrow {{F_2}} + \overrightarrow {{F_4}} = \overrightarrow {EN} + \overrightarrow {EQ} = 2\overrightarrow {EO} ,\) với \(O\) là trung điểm của \[MP\] suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {{F_2}} + \overrightarrow {{F_4}} \).
c) Đúng. \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = |2\overrightarrow {EO} | = 2EO\). Theo giả thiết, góc giữa \(EA\)với \(\left( {ABCD} \right)\) bằng \(60^\circ \) nên góc giữa \(EM\)với \(\left( {MNPQ} \right)\) cũng bằng \(60^\circ \) hay \(\widehat {SMO} = 60^\circ \).
Xét \(\Delta EMO\) có \(EM = 4700,\widehat {\,SMO} = 60^\circ \) suy ra \(EO = EM\sin 60^\circ = 2350\sqrt 3 \).
d) Đúng. Từ đây ta tính được \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = 2EO = 8141\;{\rm{N}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

