Trong không gian \[Oxyz\], một khinh khí cầu ở toạ độ \(A\left( { - 16; - 10;10} \right)\) bắt đầu bay với véc tơ vận tốc không đổi \(\overrightarrow v \left( {4;3; - 1} \right)\) (đơn vị vận tốc là km/h) và dự kiến bay trong thời gian 10 giờ. Biết trạm kiểm soát không lưu đặt ở vị trí gốc toạ độ \(O\) kiểm soát được các vật thể cách trạm một khoảng tối đa bằng \(12\)km. Thời gian kể từ khi trạm kiểm soát không lưu phát hiện ra khinh khí cầu đến khi khinh khí cầu ra khỏi vùng kiểm soát là bao nhiêu phút?
Quảng cáo
Trả lời:
\(\overrightarrow {OA} = \left( { - 16; - 10;10} \right) \Rightarrow OA = \left| {\overrightarrow {OA} } \right| = 2\sqrt {114} \approx 21,35\,\,{\rm{(km)}}.\)
Khinh khí cầu bay theo hướng của vectơ \(\overrightarrow v \left( {4;3; - 1} \right)\), do đó vị trí của máy bay ở vị trí \(M\) thì \(\overrightarrow {OM} = t\overrightarrow v ,(0 \le t \le 10)\). Suy ra \(M\left( {4t - 16;3t - 10; - t + 10} \right),(0 \le t \le 10),\) \(t\;\)(giờ).
Theo bài ra, ta có:
\(OM \le 12 \Leftrightarrow {\left( {4t - 16} \right)^2} + {\left( {3t - 10} \right)^2} + {\left( { - t + 10} \right)^2} \le 144 \Leftrightarrow 26{t^2} - 208t + 312 \le 0 \Leftrightarrow 2 \le t \le 6.\)
Thời gian kể từ khi trạm kiểm soát không lưu phát hiện ra khinh khí cầu đến khi khinh khí cầu ra khỏi vùng kiểm soát là 4 (giờ) = 240 (phút).
Đáp án: 240.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
\({\left( {3\overrightarrow a + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a + 5\overrightarrow b } \right| = \sqrt {124} \).
Lời giải
Gọi \(D\left( {x;y;z} \right)\) là vị trí của máy bay sau 10 phút bay tiếp theo (tính từ thời điểm máy bay ở điểm \(B\)). Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BD} \) cùng hướng. Do vận tốc máy bay không đổi và thời gian bay từ \(A\) đến \(B\) bằng thời gian bay từ \[B\] đến \(D\) nên \(AB = BD\).
Do đó, \(\overrightarrow {BD} = \overrightarrow {AB} = \left( {140;50;1} \right)\).
Mặt khác: \(\overrightarrow {BD} = \left( {x - 940;y - 550;z - 8} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 140}\\{y - 550 = 50}\\{z - 8 = 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1080}\\{y = 600}\\{z = 9}\end{array}} \right.} \right.\).
Vậy \(D\left( {1080;600;9} \right)\). Vậy tọa độ của máy bay trong 10 phút tiếp theo là \(\left( {1080;600;9} \right)\).
Suy ra \(x + y + z = 1689\).
Đáp án: 1689.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

