Câu hỏi:

27/09/2025 17 Lưu

Trên màn hình ra đa của đài kiểm soát (được coi như mặt phẳng tọa độ \(Oxy\) với đơn vị trên các trục tính theo ki-lô-mét), một xe thiết giáp chuyển động thẳng đều từ mục tiêu \[A\] có tọa độ \[(60;20)\] đến mục tiêu \[B\] có tọa độ \[(20;50)\] và thời gian đi quãng đường \[AB\] là 3 giờ. Gọi \(M\left( {{x_M};{y_M}} \right)\) là tọa độ của xe thiết giáp tại thời điểm sau khi xuất phát 1 giờ. Hỏi \({y_M}\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \[\overrightarrow {AM}  = \left( {x - 60;y - 20} \right),\overrightarrow {AB}  = \left( { - 40;30} \right)\].

Vì xe thiết giáp chuyển động thẳng đều nên \(\overrightarrow {AM}  = \frac{1}{3}\overrightarrow {AB} \).

Do đó: \(\left\{ {\begin{array}{*{20}{l}}{x - 60 =  - \frac{{40}}{3}}\\{y - 20 = 10}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{140}}{3}}\\{y = 30.}\end{array}} \right.} \right.\)

Vậy vị trí của xe thiết giáp tại thời điểm sau khi xuất phát 1 giờ là \(M\left( {\frac{{140}}{3};30} \right){\rm{.\;}}\)

Đáp án: 30.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

\({\left( {3\overrightarrow a  + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b  + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a  + 5\overrightarrow b } \right| = \sqrt {124} \).

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG}  = \frac{1}{4}\left( {\overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {AG}  + \overrightarrow {OB}  + \overrightarrow {BG}  + \overrightarrow {OC}  + \overrightarrow {CG}  + \overrightarrow {OD}  + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right)\].

c) Đúng. \[\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  =  - \overrightarrow {GB}  = \overrightarrow {BG} \].

d) Sai. \[\overrightarrow {AG}  = \overrightarrow {AO}  + \overrightarrow {OG}  = \overrightarrow {AO}  + \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = \overrightarrow {AO}  + \frac{1}{4}\left( {4\overrightarrow {OA}  + \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO}  + \overrightarrow {OA}  + \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\].