Cho biết \(A\) (đơn vị: \(J\)) sinh bởi lực \(\overrightarrow F \) tác dụng lên một vật được tính bằng công thức \(A = \overrightarrow F .\overrightarrow d \) trong đó \(\overrightarrow d \) là vectơ biểu thị độ dịch chuyển của vật (đơn vị: mét) khi chịu tác dụng của lực \(\overrightarrow F \). Một chiếc xe có khối lượng \(1,5\) tấn đang đi xuống trên một đoạn đường dốc có góc nghiêm \(5^\circ \) so với phương ngang. Tính công sinh ra bởi trọng lực \(\overrightarrow P \) khi xe đi hết đoạn đường dốc dài \(30\,{\rm{m}}\) (làm trong kết quả đến hàng đơn vị), biết rằng trọng lực \(\overrightarrow P \) được xác định bởi công thức \(\overrightarrow P = m.\overrightarrow g \) với \(m\) (đơn vị: kg) là khối lượng của vật và \(\overrightarrow g \) là gia tốc rơi tự do có độ lớn \(g = 9,8{\rm{m/}}{{\rm{s}}^2}\).

Cho biết \(A\) (đơn vị: \(J\)) sinh bởi lực \(\overrightarrow F \) tác dụng lên một vật được tính bằng công thức \(A = \overrightarrow F .\overrightarrow d \) trong đó \(\overrightarrow d \) là vectơ biểu thị độ dịch chuyển của vật (đơn vị: mét) khi chịu tác dụng của lực \(\overrightarrow F \). Một chiếc xe có khối lượng \(1,5\) tấn đang đi xuống trên một đoạn đường dốc có góc nghiêm \(5^\circ \) so với phương ngang. Tính công sinh ra bởi trọng lực \(\overrightarrow P \) khi xe đi hết đoạn đường dốc dài \(30\,{\rm{m}}\) (làm trong kết quả đến hàng đơn vị), biết rằng trọng lực \(\overrightarrow P \) được xác định bởi công thức \(\overrightarrow P = m.\overrightarrow g \) với \(m\) (đơn vị: kg) là khối lượng của vật và \(\overrightarrow g \) là gia tốc rơi tự do có độ lớn \(g = 9,8{\rm{m/}}{{\rm{s}}^2}\).
Quảng cáo
Trả lời:

Ta có \(1,5\) tấn \( = \) \(1500\) kg.
Độ lớn của trọng lực tác dụng lên xe là: \(\left| {\overrightarrow P } \right| = m.\left| {\overrightarrow g } \right| = 1500.9,8 = 14700\)N.
Vectơ \(\overrightarrow d \) biểu thị độ dịch chuyển của xe có độ dài là: \(\left| {\overrightarrow d } \right| = 30\left( {\rm{m}} \right)\) và \(\left( {\overrightarrow P ,\overrightarrow d } \right) = 90^\circ - 5^\circ = 85^\circ \).
Công sinh ra bởi trọng lực khi xe đi hết đoạn đường dốc là:
\(A = \overrightarrow P .\overrightarrow d = \left| {\overrightarrow P } \right|.\left| {\overrightarrow d } \right|.{\rm{cos}}\left( {\overrightarrow P ,\overrightarrow d } \right) = 14700.30.{\rm{cos85}}^\circ \approx 38436\) (J).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
\({\left( {3\overrightarrow a + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a + 5\overrightarrow b } \right| = \sqrt {124} \).
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng. \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai. \[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.