Cho hình lập phương \[ABCD.EFGH\]. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và\(\overrightarrow {EG} \)?
Quảng cáo
Trả lời:

Chọn C
Ta có: \(EG{\rm{//}}AC\) (do \(ACGE\) là hình chữ nhật)\[ \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {EG} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 45^\circ \].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Biết ba sợi dây được thắt một đầu bên trên là điểm \(S\), ba sợi dây đỡ giá gỗ tại 3 điểm tạo thành tam giác đều \(ABC\), độ dài sợi dây \(SA = SB = SC = 60\,\left( {{\rm{cm}}} \right)\), bán kính hình tròn\(OA = OB = OC = 20\,\left( {{\rm{cm}}} \right)\).
Ta có hình chóp tam giác đều \(S.ABC\), gọi \(O\)là tâm đường tròn ngoại tiếp tam giác \(ABC\).
\( \Rightarrow SO \bot (ABC)\) và \(SO = \sqrt {S{A^2} - O{A^2}} = 40\sqrt 2 \left( {{\rm{cm}}} \right)\).
Gọi lực chịu đựng của mỗi sợi dây là \({T_1},\;T{}_2,{T_3}\)các lực này bằng nhau và không quá 15 N \( \Rightarrow {T_1} = {T_2} = {T_3} \le 15{\rm{N}}\)\( \Rightarrow \left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| \le 15\,{\rm{N}}\).
Lại có \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OC} = 3\overrightarrow {SO} \).
Gọi \(P\)là lực tác động lên miếng kê (là tổng lực của miếng giá gỗ hình tròn và lực của các chậu hoa) nên \(P = \left| {3\overrightarrow {SO} } \right| = 3SO\).
Vì \(P\)chia đều ra ba sợi dây
\( \Rightarrow \frac{P}{{3{T_1}}} = \frac{{3SO}}{{3SA}} = \frac{{SO}}{{SA}} = \frac{{40\sqrt 2 }}{{60}} = \frac{{2\sqrt 2 }}{3} \Leftrightarrow {T_1} = \frac{P}{{2\sqrt 2 }} \le 15{\rm{N}} \Leftrightarrow P \le 30\sqrt 2 {\rm{N}}\).
Suy ra trọng lượng của các chậu hoa là \({P_{hoa}} + {P_{go}} \le 30\sqrt 2 N \Leftrightarrow {P_{hoa}} \le \left( {30\sqrt 2 - 5} \right)N \approx 37,4{\rm{N}}\).
Vậy trọng lượng tối đa của các chậu hoa để dây treo không bị đứt là \(37,4{\rm{N}}\).
Đáp án: 37,4.
Lời giải
Vì \[M\] thuộc mặt phẳng sàn nhà có chiều dài 8 m, rộng 6 m nên \[M\left( {x;y;0} \right)\] với \[0 \le x \le 8,0 \le y \le 6\].
Cây quạt \[A\] treo chính giữa bức tường 8 m và cách trần 1 m, cây quạt \[B\] treo chính giữa bức tường 6 m và cách trần 1,5 m.
Suy ra \[A\left( {4;0;3} \right),B\left( {0,3,\frac{5}{2}} \right)\].
Ta có: \[\overrightarrow {MA} = \left( {4 - x, - y,3} \right),\overrightarrow {MB} = \left( { - x,3 - y,\frac{5}{2}} \right)\], \[\left| {\overrightarrow {MA} - 2\overrightarrow {MB} } \right| = \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( {y - 6} \right)}^2} + 4} \].
Để \[\left| {\overrightarrow {MA} - 2\overrightarrow {MB} } \right|\] nhỏ nhất thì \[{\left( {x + 4} \right)^2} + {\left( {y - 6} \right)^2}\] nhỏ nhất.
Ta có: \[{\left( {x + 4} \right)^2} + {\left( {y - 6} \right)^2} \ge {\left( {0 + 4} \right)^2} + 0 = 16\].
Dấu bằng xảy ra khi \[x = 0,y = 6\].
Vậy \[{x^2} + {y^2} + {z^2} = {0^2} + {6^2} + {0^2} = 36\].
Đáp án: 36.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.