Câu hỏi:

27/09/2025 14 Lưu

Nhiệt độ trong 55 ngày của một địa phương được cho trong bảng ghép lớp sau:

Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất nằm trong khoảng (ảnh 1)

Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất nằm trong khoảng

A. \(\left( {17;19} \right)\).                                  
B. \(\left( {20;21} \right)\).            
C. \(\left( {19;20} \right)\).                          
D. \(\left( {23;25} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Nhiệt độ trung bình trong một ngày là:

\(\overline x  = \frac{{20,5.5 + 23,5.7 + 26,5.8 + 29,5.16 + 32,5.12 + 35,5.7}}{{55}} = 28,9\).

Phương sai của mẫu số liệu là:

\({S^2} = \frac{{20,{5^2}.5 + 23,{5^2}.7 + 26,{5^2}.8 + 29,{5^2}.16 + 32,{5^2}.12 + 35,{5^2}.7}}{{55}} - 28,{9^2} = 19,44\).

Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là \({S^2} = 19,4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Giá trị đại diện của nhóm \[\left[ {15;16} \right)\] là \[\frac{{15 + 16}}{2} = 15,5\]

b) Sai. Số trung bình của mẫu số liệu trên là

\[\overline x  = \frac{{14,5.1 + 15,5.3 + 16,5.8 + 17,5.6 + 18,5.2}}{{20}} = 16,75\]

c) Đúng. Phương sai của mẫu số liệu trên là

\[\begin{array}{l}{s^2} = \frac{1}{{20}}\left[ {1.{{\left( {14,5 - 16,75} \right)}^2} + 3.{{\left( {15,5 - 16,75} \right)}^2} + 8.{{\left( {16,5 - 16,75} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6.{{\left( {17,5 - 16,75} \right)}^2} + 2.{{\left( {18,5 - 16,75} \right)}^2}} \right] = 0,9875.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu trên là \[s = \sqrt {{s^2}}  = \sqrt {0,9875}  = \frac{{\sqrt {395} }}{{20}}\].

Lời giải

Cỡ mẫu \[n = 50\].

Gọi \[{x_1};\,\,{x_2};\,\,...;\,\,{x_{50}}\] là mẫu số liệu gốc gồm cân nặng của 50 quả xoài được xếp theo thứ tự không giảm.

Ta có: \[{x_1},\,\,{x_2},\,\,{x_3} \in \left[ {250;290} \right)\]; \[{x_4},\,\,...,\,\,{x_{16}} \in \left[ {290;330} \right)\]; \[{x_{17}},\,\,...,\,\,{x_{34}} \in \left[ {330;370} \right)\];

\[{x_{35}},\,\,...,\,\,{x_{45}} \in \left[ {370;410} \right)\]; \[{x_{46}},\,\,...,\,\,{x_{50}} \in \left[ {410;450} \right)\].

Tứ phân vị thứ nhất của mẫu số liệu gốc là \[{x_{13}} \in \left[ {290;330} \right)\]. Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \[{Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}.\left( {330 - 290} \right) = \frac{{4150}}{{13}}\].

Tứ phân vị thứ ba của mẫu số liệu gốc là \[{x_{38}} \in \left[ {370;410} \right)\]. Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \[{Q_3} = 370 + \frac{{\frac{{3.50}}{4} - \left( {3 + 13 + 18} \right)}}{{11}}.\left( {410 - 370} \right) = \frac{{4210}}{{11}}\].

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\].

Đáp án: 63,5.

Câu 6

A. 23,75.                         
B. 27,5.                         
C. 31,88.                              
D. 8,125.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \([2;3,5)\).                  
B. \([3,5;5)\).                
C. \([5;6,5)\).                       
D. \([6,5;8)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP