Câu hỏi:

27/09/2025 13 Lưu

Khối lượng của 30 củ khoai tây được cho trong bảng sau:

Độ lệch chuẩn của mẫu số liệu được làm tròn đến chữ số thập phân thứ hai là (ảnh 1)

Độ lệch chuẩn của mẫu số liệu được làm tròn đến chữ số thập phân thứ hai là

A. \(11\).                         
B. \(10,95\).                  
C. \(10,94\).                         
D. \(10,96\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Trọng lượng trung bình của một củ khoai là: \(\overline x  = \frac{{75.3 + 85.6 + 95.12 + 105.6 + 115.3}}{{30}} = 95\).

Phương sai là \({S^2} = \frac{{{{75}^2}.3 + {{85}^2}.6 + {{95}^2}.12 + {{105}^2}.6 + {{115}^2}.3}}{{30}} - {95^2} = 120\).

Độ lệch chuẩn là: \(S = \sqrt {{S^2}}  = \sqrt {120}  \approx 10,95\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Giá trị đại diện của nhóm \[\left[ {15;16} \right)\] là \[\frac{{15 + 16}}{2} = 15,5\]

b) Sai. Số trung bình của mẫu số liệu trên là

\[\overline x  = \frac{{14,5.1 + 15,5.3 + 16,5.8 + 17,5.6 + 18,5.2}}{{20}} = 16,75\]

c) Đúng. Phương sai của mẫu số liệu trên là

\[\begin{array}{l}{s^2} = \frac{1}{{20}}\left[ {1.{{\left( {14,5 - 16,75} \right)}^2} + 3.{{\left( {15,5 - 16,75} \right)}^2} + 8.{{\left( {16,5 - 16,75} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6.{{\left( {17,5 - 16,75} \right)}^2} + 2.{{\left( {18,5 - 16,75} \right)}^2}} \right] = 0,9875.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu trên là \[s = \sqrt {{s^2}}  = \sqrt {0,9875}  = \frac{{\sqrt {395} }}{{20}}\].

Lời giải

Cỡ mẫu \[n = 50\].

Gọi \[{x_1};\,\,{x_2};\,\,...;\,\,{x_{50}}\] là mẫu số liệu gốc gồm cân nặng của 50 quả xoài được xếp theo thứ tự không giảm.

Ta có: \[{x_1},\,\,{x_2},\,\,{x_3} \in \left[ {250;290} \right)\]; \[{x_4},\,\,...,\,\,{x_{16}} \in \left[ {290;330} \right)\]; \[{x_{17}},\,\,...,\,\,{x_{34}} \in \left[ {330;370} \right)\];

\[{x_{35}},\,\,...,\,\,{x_{45}} \in \left[ {370;410} \right)\]; \[{x_{46}},\,\,...,\,\,{x_{50}} \in \left[ {410;450} \right)\].

Tứ phân vị thứ nhất của mẫu số liệu gốc là \[{x_{13}} \in \left[ {290;330} \right)\]. Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \[{Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}.\left( {330 - 290} \right) = \frac{{4150}}{{13}}\].

Tứ phân vị thứ ba của mẫu số liệu gốc là \[{x_{38}} \in \left[ {370;410} \right)\]. Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \[{Q_3} = 370 + \frac{{\frac{{3.50}}{4} - \left( {3 + 13 + 18} \right)}}{{11}}.\left( {410 - 370} \right) = \frac{{4210}}{{11}}\].

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\].

Đáp án: 63,5.

Câu 6

A. 23,75.                         
B. 27,5.                         
C. 31,88.                              
D. 8,125.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \([2;3,5)\).                  
B. \([3,5;5)\).                
C. \([5;6,5)\).                       
D. \([6,5;8)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP