Phần 3. Trắc nghiệm trả lời ngắn
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \(\overline {a,b77} \). Tính \(a + b\).
Phần 3. Trắc nghiệm trả lời ngắn
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Quảng cáo
Trả lời:

Ta có bảng sau:
Cỡ mẫu là \[n = 13 + 45 + 24 + 12 + 6 = 100.\]
Số trung bình của mẫu số liệu ghép nhóm là:
\[\overline x = \frac{{13.19,25 + 45.19,75 + 24.20,25 + 12.20,75 + 6.21,25}}{{100}} = 20,015\].
Phương sai của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}{S^2} = \frac{1}{{100}}\left[ {13.{{\left( {19,25 - 20,015} \right)}^2} + 45.{{\left( {19,75 - 20,015} \right)}^2} + 24.{{\left( {20,25 - 20,015} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 12.{{\left( {20,75 - 20,015} \right)}^2} + 6.{{\left( {21,25 - 20,015} \right)}^2}} \right] \approx 0,277.\end{array}\]
Suy ra \(a = 0;b = 2 \Rightarrow a + b = 2.\)
Đáp án: 2.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Giá trị đại diện của nhóm \[\left[ {15;16} \right)\] là \[\frac{{15 + 16}}{2} = 15,5\]
b) Sai. Số trung bình của mẫu số liệu trên là
\[\overline x = \frac{{14,5.1 + 15,5.3 + 16,5.8 + 17,5.6 + 18,5.2}}{{20}} = 16,75\]
c) Đúng. Phương sai của mẫu số liệu trên là
\[\begin{array}{l}{s^2} = \frac{1}{{20}}\left[ {1.{{\left( {14,5 - 16,75} \right)}^2} + 3.{{\left( {15,5 - 16,75} \right)}^2} + 8.{{\left( {16,5 - 16,75} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6.{{\left( {17,5 - 16,75} \right)}^2} + 2.{{\left( {18,5 - 16,75} \right)}^2}} \right] = 0,9875.\end{array}\]
d) Đúng. Độ lệch chuẩn của mẫu số liệu trên là \[s = \sqrt {{s^2}} = \sqrt {0,9875} = \frac{{\sqrt {395} }}{{20}}\].
Lời giải
Cỡ mẫu \[n = 50\].
Gọi \[{x_1};\,\,{x_2};\,\,...;\,\,{x_{50}}\] là mẫu số liệu gốc gồm cân nặng của 50 quả xoài được xếp theo thứ tự không giảm.
Ta có: \[{x_1},\,\,{x_2},\,\,{x_3} \in \left[ {250;290} \right)\]; \[{x_4},\,\,...,\,\,{x_{16}} \in \left[ {290;330} \right)\]; \[{x_{17}},\,\,...,\,\,{x_{34}} \in \left[ {330;370} \right)\];
\[{x_{35}},\,\,...,\,\,{x_{45}} \in \left[ {370;410} \right)\]; \[{x_{46}},\,\,...,\,\,{x_{50}} \in \left[ {410;450} \right)\].
Tứ phân vị thứ nhất của mẫu số liệu gốc là \[{x_{13}} \in \left[ {290;330} \right)\]. Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \[{Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}.\left( {330 - 290} \right) = \frac{{4150}}{{13}}\].
Tứ phân vị thứ ba của mẫu số liệu gốc là \[{x_{38}} \in \left[ {370;410} \right)\]. Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \[{Q_3} = 370 + \frac{{\frac{{3.50}}{4} - \left( {3 + 13 + 18} \right)}}{{11}}.\left( {410 - 370} \right) = \frac{{4210}}{{11}}\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\].
Đáp án: 63,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.