Câu hỏi:

29/09/2025 3 Lưu

Mức độ 2] Bạn Linh thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp \(12A\) và lớp \(12\,B\) ở bảng sau:

Chiều cao (cm)

\(\left[ {150;155} \right)\)

\(\left[ {155;160} \right)\)

\(\left[ {160;165} \right)\)

\(\left[ {165;170} \right)\)

\(\left[ {170;175} \right)\)

\(\left[ {175;180} \right)\)

Số học sinh nữ lớp 12 A

2

7

12

3

0

1

Số học sinh nữ lớp 12 B

0

9

8

2

1

5

 

Gọi \({R_1}\); \({R_2}\)lần lượt là khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp \(12A\) và \(12\,B\). Tìm \({R_1}\); \({R_2}\).

A. \({R_1} = 30\,\,\left( {cm} \right)\,\,\,;\,\,{R_2} = 25\,\,\left( {cm} \right)\).

B. \({R_1} = 30\,\,\left( {cm} \right)\,\,\,;\,\,{R_2} = 30\,\,\left( {cm} \right)\).

C. \({R_1} = 25\,\,\left( {cm} \right)\,\,\,;\,\,{R_2} = 25\,\,\left( {cm} \right)\). 
D. \({R_1} = 12\,\,\left( {cm} \right)\,\,\,;\,\,{R_2} = 9\,\,\left( {cm} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp \(12A\)là: \({R_1} = 180 - 150 = 30\) (cm).

Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp \(12B\), khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).

Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp \(12B\)là: \({R_2} = 180 - 155 = 25\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12C là \[185 - 155 = 30\left( {cm} \right)\].

Nên b) đúng

c) Khoảng biến thiên của chiều cao các bạn học sinh nữ lớp 12D là \[180 - 155 = 25\left( {cm} \right)\].

Nên c) đúng.

d) Dựa vào khoảng biến thiên chiều cao của hai lớp 12C và 12D thì chiều cao của lớp 12C có độ phân tán lớn hơn.

Nên d) sai

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[R = 40 - 10 = 30\].

Nên a) đúng.

b) Đúng.

c) Tần số tích luỹ của các nhóm lần lượt là \[c{f_1} = 15,c{f_2} = 33,c{f_3} = 43,c{f_4} = 53,c{f_5} = 58,c{f_4} = 60\].

Ta có \[\frac{n}{4} = \frac{{60}}{4} = 15\]suy ra nhóm 1 là nhóm đầu tiên có tần só tích luỹ lớn hơn hoặc bằng 15.

Xét nhóm I là nhóm \[\left[ {10;15} \right)\]ta có \[S = 10,h = 5,{n_1} = 15\].

Ta có tứ phân vị thứ nhất là \[{Q_1} = s + \left( {\frac{{15 - c{f_0}}}{{{n_1}}}} \right).h = 10 + \left( {\frac{{15 - 0}}{{15}}} \right).5 = 15\].

Nên c) đúng.

d) Ta có \[\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\]mà \[43 < 45 < 53\]suy ra nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 45.

Xét nhóm 4 là nhóm \[\left[ {25;30} \right]\] có \[t = 25,l = 5,{n_4} = 10\]và nhóm 3 là nhóm \[\left[ {20;25} \right]\]có \[c{f_3} = 43\].

Ta có tứ phân vị thứ ba là \[{Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 25 + \left( {\frac{{45 - 43}}{{10}}} \right).5 = 26\].

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[{\Delta _Q} = {Q_3} - {Q_1} = 26 - 15 = 9\].

Nên d) sai.

Câu 4

A. \[{\Delta _Q}\; = {Q_2} - {Q_1}\].        
B. \[{\Delta _Q}\; = {Q_3} - {Q_1}\].
C. \[{\Delta _Q}\; = {Q_2} - {Q_3}\].      
D. \[{\Delta _Q}\; = {Q_1} - {Q_3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP