Cho tứ diện đều \(S.ABC\) cạnh \(a\),\(M\) là trung điểm của cạnh \(BC\). Tính \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {SB} } \right)\) (Làm tròn kết quả đến hàng phần trăm).
Cho tứ diện đều \(S.ABC\) cạnh \(a\),\(M\) là trung điểm của cạnh \(BC\). Tính \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {SB} } \right)\) (Làm tròn kết quả đến hàng phần trăm).
Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:

Ta có:
Suy ra:
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ý a) Đúng: Vì \[\left\{ \begin{array}{l}\overrightarrow {A'C} - \overrightarrow {A'A} = \overrightarrow {AC} \\\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \end{array} \right. \Rightarrow \overrightarrow {A'C} - \overrightarrow {AA'} = \overrightarrow {AB} + \overrightarrow {AD} \]
Ý b) Sai: Vì \[\overrightarrow {BC'} = \overrightarrow {BB'} + \overrightarrow {B'C'} = \overrightarrow {AA'} + \overrightarrow {B'C'} \].
Ý c) Đúng: Vì \[\overrightarrow {C'O} = \overrightarrow {C'A'} + \overrightarrow {A'O} = \overrightarrow {C'A'} - \overrightarrow {OA'} \].
Ý d) Sai: Ta có: \(\overrightarrow {A'D} .\overrightarrow {A'B} = \left| {\overrightarrow {A'D} } \right|.\left| {\overrightarrow {A'B} } \right|.\cos \left( {\overrightarrow {A'D} ,\overrightarrow {A'B} } \right) = a\sqrt 2 .a\sqrt 2 .c{\rm{os}}60^\circ = {a^2}\)
Lời giải
Do \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB,SA \bot AD\). Do \(ABCD\) là hình chữ nhật nên \(AB \bot AD\).
Do đó, đặt \(\overrightarrow {AS} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AD} = \overrightarrow c \) thì \(\left| {\overrightarrow a } \right| = 4,\left| {\overrightarrow b } \right| = 1,\left| {\overrightarrow c } \right| = 2\) và \(\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0\)
Ta có: \(\cos \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) = \frac{{\overrightarrow {SC} .\overrightarrow {DM} }}{{\left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {DM} } \right|}}\).
Do \(\overrightarrow {SC} = \overrightarrow {AC} - \overrightarrow {AS} = \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) - \overrightarrow {AS} = - \overrightarrow a + \overrightarrow b + \overrightarrow c \) và \(\overrightarrow {DM} = \overrightarrow {AM} - \overrightarrow {AD} = \frac{1}{2}\overrightarrow {AB} - \overrightarrow {AD} = \frac{1}{2}\overrightarrow b - \overrightarrow c \) nên:
\[\overrightarrow {SC} .\overrightarrow {DM} = \left( { - \overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\left( {\frac{1}{2}\overrightarrow b - \overrightarrow c } \right) = - \frac{1}{2}\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c + \frac{1}{2}{\overrightarrow b ^2} - \overrightarrow b .\overrightarrow c + \frac{1}{2}.\overrightarrow c .\overrightarrow b - {\overrightarrow c ^2} = \frac{1}{2}{\overrightarrow b ^2} - {\overrightarrow c ^2} = \frac{1}{2}{\left| {\overrightarrow b } \right|^2} - {\left| {\overrightarrow c } \right|^2}\]
\[ = \frac{1}{2}{.1^2} - {2^2} = - \frac{7}{2}\];
\({\left| {\overrightarrow {SC} } \right|^2} = {\left( { - \overrightarrow a + \overrightarrow b + \overrightarrow c } \right)^2} = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} - 2\overrightarrow a \overrightarrow b - 2\overrightarrow a \overrightarrow c + 2\overrightarrow b \overrightarrow c = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} = {4^2} + {1^2} + {2^2} + = 21\)
\({\left| {\overrightarrow {DM} } \right|^2} = {\overrightarrow {DM} ^2} = {\left( {\frac{1}{2}\overrightarrow b - \overrightarrow c } \right)^2} = \frac{1}{4}{\overrightarrow b ^2} - \overrightarrow b \overrightarrow c + {\overrightarrow c ^2} = \frac{1}{4}{\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} = \frac{1}{4}.1 + {2^2} = \frac{{17}}{4}\).
Suy ra:
\(\cos \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) = \frac{{ - \frac{7}{2}}}{{\sqrt {21} .\sqrt {\frac{{17}}{4}} }} = - \frac{{\sqrt {357} }}{{51}} \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) \approx 111,75^\circ \).
Vậy góc giữa hai vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {DM} \) là khoảng \(111,75^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.