Câu hỏi:

30/09/2025 2,365 Lưu

Cho tứ diện đều \(S.ABC\) cạnh \(a\),\(M\) là trung điểm của cạnh \(BC\). Tính \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {SB} } \right)\) (Làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện đều \(S.ABC\) cạnh \(a\),\(M\) là trung điểm của cạnh \(BC\). Tính \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {SB} } \right)\) (Làm tròn kết quả đến hàng phần trăm). (ảnh 1)

Ta có:

AM.SB=SMSA.SB=SM.SBSA.SB=SM.SB.cosBSM^SA.SB.cosASB^                                                                                           =a32.a.cos30°a.a.cos60°                                                                                           =a24

Suy ra: cosAM,SB=AM.SBAM.SB=a24a32.a=360,29

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)Đ                  b) S                    c) S                       d Đ

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Đặt \(\overrightarrow {AB}  = \overrightarrow x ;\,\overrightarrow {AD}  = \overrightarrow y ;\,\overrightarrow {AA'}  = \overrightarrow z \). Xét tính đúng sai của các mệnh đề sau đây: (ảnh 1)

a) Đúng.

Theo quy tắc hình hộp ta có  \(\overrightarrow {AC'}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow x  + \overrightarrow y  + \overrightarrow z \).

b) Sai.

Theo quy  tắc 3 điểm ta có \(\overrightarrow {A'B}  = \overrightarrow {AB}  - \overrightarrow {AA'}  = \overrightarrow x  - \overrightarrow z \).

c) Sai.

Vì hình lập phương có cạnh bằng \(a\) nên \(A'B = A'C' = C'B = a\sqrt 2 \), do đó tam giác \(A'BC'\) đều, nên \(\angle BA'C' = {60^\bigcirc } \Rightarrow \left( {\overrightarrow {BA'} ,\,\overrightarrow {A'C'} } \right) = {180^\bigcirc } - {60^\bigcirc } = {120^\bigcirc }\).

d) Đúng.

Dễ thấy \(ABCD.A'B'C'D'\) nên \(AA' \bot \left( {ABCD} \right) \Rightarrow AA' \bot AM \Rightarrow \)tam giác \(AA'M\) vuông tại \(A\).

 Có \(\left| {\overrightarrow {A'M} } \right| = A'M = \sqrt {A{{A'}^2} + A{M^2}}  = \sqrt {A{{A'}^2} + A{B^2} + B{M^2}} \)\( = \sqrt {{a^2} + {a^2} + \frac{{{a^2}}}{4}}  = \frac{{3a}}{2}\).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(SA = 4,AB = 1,AD = 2\) và \(SA \bot \left( {ABCD} \right)\). Gọi \(M\) là trung điểm của \(AB\). Tính góc giữa hai vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {DM} \). (ảnh 1)

Do \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB,SA \bot AD\). Do \(ABCD\) là hình chữ nhật nên \(AB \bot AD\).

Do đó, đặt \(\overrightarrow {AS}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AD}  = \overrightarrow c \) thì \(\left| {\overrightarrow a } \right| = 4,\left| {\overrightarrow b } \right| = 1,\left| {\overrightarrow c } \right| = 2\) và \(\overrightarrow a .\overrightarrow b  = \overrightarrow b .\overrightarrow c  = \overrightarrow c .\overrightarrow a  = 0\)

Ta có: \(\cos \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) = \frac{{\overrightarrow {SC} .\overrightarrow {DM} }}{{\left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {DM} } \right|}}\).

Do \(\overrightarrow {SC}  = \overrightarrow {AC}  - \overrightarrow {AS}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \overrightarrow {AS}  =  - \overrightarrow a  + \overrightarrow b  + \overrightarrow c \) và \(\overrightarrow {DM}  = \overrightarrow {AM}  - \overrightarrow {AD}  = \frac{1}{2}\overrightarrow {AB}  - \overrightarrow {AD}  = \frac{1}{2}\overrightarrow b  - \overrightarrow c \) nên:

\[\overrightarrow {SC} .\overrightarrow {DM}  = \left( { - \overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)\left( {\frac{1}{2}\overrightarrow b  - \overrightarrow c } \right) =  - \frac{1}{2}\overrightarrow a .\overrightarrow b  + \overrightarrow a .\overrightarrow c  + \frac{1}{2}{\overrightarrow b ^2} - \overrightarrow b .\overrightarrow c  + \frac{1}{2}.\overrightarrow c .\overrightarrow b  - {\overrightarrow c ^2} = \frac{1}{2}{\overrightarrow b ^2} - {\overrightarrow c ^2} = \frac{1}{2}{\left| {\overrightarrow b } \right|^2} - {\left| {\overrightarrow c } \right|^2}\]

\[ = \frac{1}{2}{.1^2} - {2^2} =  - \frac{7}{2}\];

\({\left| {\overrightarrow {SC} } \right|^2} = {\left( { - \overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)^2} = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} - 2\overrightarrow a \overrightarrow b  - 2\overrightarrow a \overrightarrow c  + 2\overrightarrow b \overrightarrow c  = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} = {4^2} + {1^2} + {2^2} +  = 21\)

\({\left| {\overrightarrow {DM} } \right|^2} = {\overrightarrow {DM} ^2} = {\left( {\frac{1}{2}\overrightarrow b  - \overrightarrow c } \right)^2} = \frac{1}{4}{\overrightarrow b ^2} - \overrightarrow b \overrightarrow c  + {\overrightarrow c ^2} = \frac{1}{4}{\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} = \frac{1}{4}.1 + {2^2} = \frac{{17}}{4}\).

Suy ra:

\(\cos \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) = \frac{{ - \frac{7}{2}}}{{\sqrt {21} .\sqrt {\frac{{17}}{4}} }} =  - \frac{{\sqrt {357} }}{{51}} \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) \approx 111,75^\circ \).

Vậy góc giữa hai vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {DM} \) là khoảng \(111,75^\circ \).

Câu 5

A. \[\overrightarrow {AC} \].                         
B. \[\overrightarrow {AD} \].                              
C. \[\overrightarrow {A'C} \].                              
D. \[\overrightarrow {AB} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{a^2}\].                
B. \(0.\)                     
C. \[a\].                            
D. \[\frac{{{a^2}}}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP