Câu hỏi:

30/09/2025 53 Lưu

Cho tứ diện đều \(S.ABC\) cạnh \(a\),\(M\) là trung điểm của cạnh \(BC\). Tính \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {SB} } \right)\) (Làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện đều \(S.ABC\) cạnh \(a\),\(M\) là trung điểm của cạnh \(BC\). Tính \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {SB} } \right)\) (Làm tròn kết quả đến hàng phần trăm). (ảnh 1)

Ta có:

AM.SB=SMSA.SB=SM.SBSA.SB=SM.SB.cosBSM^SA.SB.cosASB^                                                                                           =a32.a.cos30°a.a.cos60°                                                                                           =a24

Suy ra: cosAM,SB=AM.SBAM.SB=a24a32.a=360,29

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian cho hình lập phương \(ABCD.A'B'C'D'\) có độ dài cạnh là \(a\). Gọi \(O\)là giao điểm của \(BD\) và \(AC\). (ảnh 1)

Ý a) Đúng: Vì \[\left\{ \begin{array}{l}\overrightarrow {A'C}  - \overrightarrow {A'A}  = \overrightarrow {AC} \\\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \end{array} \right. \Rightarrow \overrightarrow {A'C}  - \overrightarrow {AA'}  = \overrightarrow {AB}  + \overrightarrow {AD} \]

Ý b) Sai: Vì \[\overrightarrow {BC'}  = \overrightarrow {BB'}  + \overrightarrow {B'C'}  = \overrightarrow {AA'}  + \overrightarrow {B'C'} \].

Ý c) Đúng: Vì \[\overrightarrow {C'O}  = \overrightarrow {C'A'}  + \overrightarrow {A'O}  = \overrightarrow {C'A'}  - \overrightarrow {OA'} \].

Ý d) Sai: Ta có: \(\overrightarrow {A'D} .\overrightarrow {A'B}  = \left| {\overrightarrow {A'D} } \right|.\left| {\overrightarrow {A'B} } \right|.\cos \left( {\overrightarrow {A'D} ,\overrightarrow {A'B} } \right) = a\sqrt 2 .a\sqrt 2 .c{\rm{os}}60^\circ  = {a^2}\)

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(SA = 4,AB = 1,AD = 2\) và \(SA \bot \left( {ABCD} \right)\). Gọi \(M\) là trung điểm của \(AB\). Tính góc giữa hai vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {DM} \). (ảnh 1)

Do \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB,SA \bot AD\). Do \(ABCD\) là hình chữ nhật nên \(AB \bot AD\).

Do đó, đặt \(\overrightarrow {AS}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AD}  = \overrightarrow c \) thì \(\left| {\overrightarrow a } \right| = 4,\left| {\overrightarrow b } \right| = 1,\left| {\overrightarrow c } \right| = 2\) và \(\overrightarrow a .\overrightarrow b  = \overrightarrow b .\overrightarrow c  = \overrightarrow c .\overrightarrow a  = 0\)

Ta có: \(\cos \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) = \frac{{\overrightarrow {SC} .\overrightarrow {DM} }}{{\left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {DM} } \right|}}\).

Do \(\overrightarrow {SC}  = \overrightarrow {AC}  - \overrightarrow {AS}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \overrightarrow {AS}  =  - \overrightarrow a  + \overrightarrow b  + \overrightarrow c \) và \(\overrightarrow {DM}  = \overrightarrow {AM}  - \overrightarrow {AD}  = \frac{1}{2}\overrightarrow {AB}  - \overrightarrow {AD}  = \frac{1}{2}\overrightarrow b  - \overrightarrow c \) nên:

\[\overrightarrow {SC} .\overrightarrow {DM}  = \left( { - \overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)\left( {\frac{1}{2}\overrightarrow b  - \overrightarrow c } \right) =  - \frac{1}{2}\overrightarrow a .\overrightarrow b  + \overrightarrow a .\overrightarrow c  + \frac{1}{2}{\overrightarrow b ^2} - \overrightarrow b .\overrightarrow c  + \frac{1}{2}.\overrightarrow c .\overrightarrow b  - {\overrightarrow c ^2} = \frac{1}{2}{\overrightarrow b ^2} - {\overrightarrow c ^2} = \frac{1}{2}{\left| {\overrightarrow b } \right|^2} - {\left| {\overrightarrow c } \right|^2}\]

\[ = \frac{1}{2}{.1^2} - {2^2} =  - \frac{7}{2}\];

\({\left| {\overrightarrow {SC} } \right|^2} = {\left( { - \overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)^2} = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} - 2\overrightarrow a \overrightarrow b  - 2\overrightarrow a \overrightarrow c  + 2\overrightarrow b \overrightarrow c  = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} = {4^2} + {1^2} + {2^2} +  = 21\)

\({\left| {\overrightarrow {DM} } \right|^2} = {\overrightarrow {DM} ^2} = {\left( {\frac{1}{2}\overrightarrow b  - \overrightarrow c } \right)^2} = \frac{1}{4}{\overrightarrow b ^2} - \overrightarrow b \overrightarrow c  + {\overrightarrow c ^2} = \frac{1}{4}{\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} = \frac{1}{4}.1 + {2^2} = \frac{{17}}{4}\).

Suy ra:

\(\cos \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) = \frac{{ - \frac{7}{2}}}{{\sqrt {21} .\sqrt {\frac{{17}}{4}} }} =  - \frac{{\sqrt {357} }}{{51}} \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {DM} } \right) \approx 111,75^\circ \).

Vậy góc giữa hai vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {DM} \) là khoảng \(111,75^\circ \).