Môt chiếc khinh khí cầu bay lên từ địa điểm cho trước. Sau khoảng thời gian bay, chiếc khinh khí cầu cách địa điểm xuất phát \(2,5km\) về hướng nam và \(1,7km\) về hướng đông, đồng thời cách mặt đất là \(0,6km\). Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của chiếc khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\) hướng về nam, trục \(Oy\) hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilomet.

Tính khoảng cách từ địa điểm xuất phát đến địa điểm hiện tại của khinh khí cầu (đơn vị lấy theo kilomet và làm tròn đến \(2\) chữ số sau phần thập phân)
Môt chiếc khinh khí cầu bay lên từ địa điểm cho trước. Sau khoảng thời gian bay, chiếc khinh khí cầu cách địa điểm xuất phát \(2,5km\) về hướng nam và \(1,7km\) về hướng đông, đồng thời cách mặt đất là \(0,6km\). Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của chiếc khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\) hướng về nam, trục \(Oy\) hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilomet.

Tính khoảng cách từ địa điểm xuất phát đến địa điểm hiện tại của khinh khí cầu (đơn vị lấy theo kilomet và làm tròn đến \(2\) chữ số sau phần thập phân)
Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:
Đáp số: \(3,08\)
Với hệ trục toạ độ đã chọn thì vị trí hiện tại của khinh khí cầu là \(A\left( {2,5;1,7;0,6} \right)\).
Khi đó khoảng cách từ địa điểm xuất phát đến địa điểm hiện tại của khinh khí cầu là: \(OA = \sqrt {2,{5^2} + 1,{7^2} + 0,{6^2}} \approx 3,08\left( {km} \right)\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình hộp \(ABCD.A'B'C'D'\)có tất cả các mặt đều là hình thoi cạnh \[\sqrt 6 \] và các góc \(\widehat {BAA'} = \widehat {BAD} = \widehat {DAA'} = {60^0}\). Tính độ dài \(AC'\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/6-1759238314.png)
Ta có \(\overrightarrow {AC'} = \overrightarrow {AA'} + \overrightarrow {AC} = \overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \)
Xét \(AC{'^2} = {\overrightarrow {AC'} ^2} = {\left( {\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} } \right)^2}\)
=\[AA{'^2} + A{B^2} + A{D^2}\]+\(2AA'.AB.\cos \widehat {BAA'}\)+\(2AA'.AD.\cos \widehat {A'AD} + 2AB.AD.\cos \widehat {BAD}\)
\( = 3{\left( {\sqrt 6 } \right)^2} + 3.2\sqrt 6 .\sqrt 6 .\cos {60^0} = 6\)
Câu 2
Lời giải
Với \(k = 1\) ta có: \[\overrightarrow {AC} + \overrightarrow {BA'} + 1.\left( {\overrightarrow {DB} + \overrightarrow {C'D} } \right) = \overrightarrow {AC} + \overrightarrow {BA'} + \overrightarrow {C'B} = \overrightarrow {AC} + \overrightarrow {C'A'} = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow 0 \].
Câu 3
A. \(k = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.