Câu hỏi:

30/09/2025 1,348 Lưu

Cho hình lập phương \[B'C\] có đường chéo \[A'C = \frac{3}{{16}}\]. Gọi \(O\) là tâm hình vuông \(ABCD\) và điểm \[20\] thỏa mãn: \[\overrightarrow {OS}  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  + \overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'} \]. Khi đó độ dài của đoạn \[OS\] bằng \(\frac{{a\sqrt 3 }}{b}\) với \(a,b \in \mathbb{N}\) và \(\frac{a}{b}\) là phân số tối giản. Tính giá trị của biểu thức \(P = {a^2} + {b^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình lập phương \[B'C\] có đường chéo \[A'C = \frac{3}{ (ảnh 1)

Ta có: \[A'{C^2} = A'{A^2} + A{C^2} = 3A'{A^2} \Rightarrow A'A = \frac{{A'C}}{{\sqrt 3 }} = \frac{{\sqrt 3 }}{{16}}\].

Gọi \[O'\] là tâm của hình vuông \(A'B'C'D'\).

Lại có : \[\overrightarrow {OS} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} \]

\[ = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right) + \left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right)\]

\[ = 2\overrightarrow {OO'} + 2\overrightarrow {OO'} = 4\overrightarrow {OO'} \]

Suy ra \[OS = \left| {\overrightarrow {OS} } \right| = \left| {4\overrightarrow {OO'} } \right| = 4OO' = 4.\frac{{\sqrt 3 }}{{16}} = \frac{{\sqrt 3 }}{4}\].

Khi đó \(a = 1,b = 4 \Rightarrow P = {a^2} + {b^2} = 17\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\overrightarrow a = \overrightarrow b + \overrightarrow c \].                                                                              
B. \[\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d = \overrightarrow 0 \].
C. \[\overrightarrow b - \overrightarrow c  + \overrightarrow d = \overrightarrow 0 \].                                                    
D. \[\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow d \].

Lời giải

Cho hình lăng trụ tam giác \[ABC.A'B'C'\]. Đặt \[\overrightarrow {AA'}  = \overrightarrow a ,\overrightarrow {AB}  = \overrig (ảnh 1)

Ta có: \[\overrightarrow b - \overrightarrow c + \overrightarrow d = \overrightarrow {AB} - \overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {CB} + \overrightarrow {BC} = \overrightarrow 0 \].

Lời giải

Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng \[2\]. Tính \(\overrightarrow {AB} .\overrightarrow {A'C'} \). (ảnh 2)

Ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = 45^\circ \).

Khi đó: \(\overrightarrow {AB} .\overrightarrow {A'C'} = AB.A'C'.\cos \left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = 2.2\sqrt 2 .\cos 45^\circ = 4\).

Câu 6

A. \(\sqrt 3 a\).                           

B. \(\sqrt 2 a\).           
C. \(\sqrt 6 a\).                                            
D. \(2\sqrt 3 a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP