Phần 3. Trắc nghiệm trả lời ngắn
Một giỏ hoa treo trong nhà làm bằng \(3\) sợi dây không giãn, mỗi sợi dài 60 cm miếng kê là một miếng gỗ cân đối hình tròn bán kính 20 cm ba sợi dây được thắt một đầu bên trên và đỡ giá gỗ tại 3 điểm tạo thành tam giác đều (giả sử mối thắt của 3 sợi dây và mối nối của mỗi sợi dây với miếng gỗ không đáng kể). Biết lực chịu đựng của mỗi sợi dây bằng nhau và mỗi sợi chịu không quá 15 N, trọng lượng của miếng giá gỗ là 5 N. Tính trọng lượng tối đa của các chậu hoa để dây treo không bị đứt (đơn vị Newton, kết quả làm tròn đến hàng phần chục).
Phần 3. Trắc nghiệm trả lời ngắn
Một giỏ hoa treo trong nhà làm bằng \(3\) sợi dây không giãn, mỗi sợi dài 60 cm miếng kê là một miếng gỗ cân đối hình tròn bán kính 20 cm ba sợi dây được thắt một đầu bên trên và đỡ giá gỗ tại 3 điểm tạo thành tam giác đều (giả sử mối thắt của 3 sợi dây và mối nối của mỗi sợi dây với miếng gỗ không đáng kể). Biết lực chịu đựng của mỗi sợi dây bằng nhau và mỗi sợi chịu không quá 15 N, trọng lượng của miếng giá gỗ là 5 N. Tính trọng lượng tối đa của các chậu hoa để dây treo không bị đứt (đơn vị Newton, kết quả làm tròn đến hàng phần chục).

Quảng cáo
Trả lời:

Biết ba sợi dây được thắt một đầu bên trên là điểm \(S\), ba sợi dây đỡ giá gỗ tại 3 điểm tạo thành tam giác đều \(ABC\), độ dài sợi dây \(SA = SB = SC = 60\,\left( {{\rm{cm}}} \right)\), bán kính hình tròn\(OA = OB = OC = 20\,\left( {{\rm{cm}}} \right)\).
Ta có hình chóp tam giác đều \(S.ABC\), gọi \(O\)là tâm đường tròn ngoại tiếp tam giác \(ABC\).
\( \Rightarrow SO \bot (ABC)\) và \(SO = \sqrt {S{A^2} - O{A^2}} = 40\sqrt 2 \left( {{\rm{cm}}} \right)\).
Gọi lực chịu đựng của mỗi sợi dây là \({T_1},\;T{}_2,{T_3}\)các lực này bằng nhau và không quá 15 N \( \Rightarrow {T_1} = {T_2} = {T_3} \le 15{\rm{N}}\)\( \Rightarrow \left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| \le 15\,{\rm{N}}\).
Lại có \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OC} = 3\overrightarrow {SO} \).
Gọi \(P\)là lực tác động lên miếng kê (là tổng lực của miếng giá gỗ hình tròn và lực của các chậu hoa) nên \(P = \left| {3\overrightarrow {SO} } \right| = 3SO\).
Vì \(P\)chia đều ra ba sợi dây
\( \Rightarrow \frac{P}{{3{T_1}}} = \frac{{3SO}}{{3SA}} = \frac{{SO}}{{SA}} = \frac{{40\sqrt 2 }}{{60}} = \frac{{2\sqrt 2 }}{3} \Leftrightarrow {T_1} = \frac{P}{{2\sqrt 2 }} \le 15{\rm{N}} \Leftrightarrow P \le 30\sqrt 2 {\rm{N}}\).
Suy ra trọng lượng của các chậu hoa là \({P_{hoa}} + {P_{go}} \le 30\sqrt 2 N \Leftrightarrow {P_{hoa}} \le \left( {30\sqrt 2 - 5} \right)N \approx 37,4{\rm{N}}\).
Vậy trọng lượng tối đa của các chậu hoa để dây treo không bị đứt là \(37,4{\rm{N}}\).
Đáp án: 37,4.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ra đa đặt trên đỉnh tháp, trục \(Oz\) hướng thẳng đứng lên phía trên, suy ra tọa độ của đỉnh tháp \(E(0;0;0,1)\).
b) Đúng. Tọa độ điểm \(F\left( {400; - 300;12} \right)\).
\[\overrightarrow {EF} = \left( {400; - 300;11,9} \right) \Rightarrow EF \approx 500 < 600\,{\rm{km}}\]. Vậy \(F\)nằm trong phạm vi điều khiển của ra đa.
c) Sai. Từ \(F\), máy bay bay 1 giờ đến \(A\) với vận tốc \(90\,\,{\rm{km/h}}\) theo phương \(\vec a = (3;4;0)\).
Suy ra \[\left\{ \begin{array}{l}\overrightarrow {AF} = k\overrightarrow a \\\left| {\overrightarrow {AF} } \right| = 900\end{array} \right. \Rightarrow k\left| {\overrightarrow a } \right| = 900 \Rightarrow k = \frac{{900}}{{\sqrt {{3^2} + {4^2}} }} = 180.\]
Suy ra \(\overrightarrow {AF} = \left( {540;720;0} \right) \Rightarrow A\left( {940;420;12} \right).\)
d) Sai. Gọi \(K\left( {x,y,z} \right)\) là điểm máy bay đạt đến phạm vi quan sát của ra đa, suy ra \(EK = 600;\)\[EF \approx 500\].
Khi đó \(\overrightarrow {FK} = k\overrightarrow a \left( {k > 0} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 400 = 3k\\y + 300 = 4k\\z - 12 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400 + 3k\\y = - 300 + 4k\\z = 12\end{array} \right. \Rightarrow K\left( {400 + 3k; - 300 + 4k;12} \right)\)
Suy ra \(\overrightarrow {EK} = \left( {400 + 3k; - 300 + 4k;11,9} \right)\), mà \(EK = 600.\)
Suy ra \({\left( {400 + 3k} \right)^2} + {\left( { - 300 + 4k} \right)^2} + 11,{9^2} = {600^2} \Leftrightarrow 25{k^2} = 109858,39 \Leftrightarrow k \approx 66.\)
Khi đó \(K\left( {598; - 36;12} \right) \Rightarrow \overrightarrow {FK} = \left( {198;264;0} \right) \Rightarrow FK = 330\).
Thời gian máy bay trong phạm vi theo dõi của ra đa \(t = \frac{{330.60}}{{900}} = 22\) phút.
Lời giải
a) Sai. Ta có: \(A'\left( {0\,;\,0\,;\,0} \right)\,,\,B'\left( {1\,;\,0\,;\,0} \right)\,,\,D'\left( {0\,;\,1\,;\,0} \right)\). Suy ra: \(I\left( {\frac{1}{2}\,;\,\frac{1}{2}\,;\,0} \right)\).
Mặt khác ta có \(O\left( {\frac{1}{2}\,;\,\frac{1}{2}\,;\,\frac{1}{2}} \right)\).
Ta có \(\overrightarrow {OM} = \frac{1}{3}\overrightarrow {OI} \Leftrightarrow \overrightarrow {OM} = \left( {0\,;\,0\,;\, - \frac{1}{6}} \right)\). Vậy \(M\left( {\frac{1}{2}\,;\,\frac{1}{2}\,;\,\frac{1}{3}} \right)\).
b) Đúng. Toạ độ các điểm \(A'\left( {0\,;\,0\,;\,0} \right)\,,\,B'\left( {1\,;\,0\,;\,0} \right)\,,\,D'\left( {0\,;\,1\,;\,0} \right)\) và \(A\left( {0\,;\,0\,;\,1} \right)\).
c) Đúng. Ta có \(\overrightarrow {A'P} = \overrightarrow {A'B'} + 2\overrightarrow {A'D'} - 2\overrightarrow {A'A} \Rightarrow P\left( {1\,;\,2\,;\, - 2} \right)\);
\(\overrightarrow {A'Q} = \frac{8}{3}\overrightarrow {A'B'} + \frac{4}{3}\overrightarrow {A'D'} + \frac{8}{3}\overrightarrow {A'A} \Rightarrow Q\left( {\frac{8}{3};\frac{4}{3};\frac{8}{3}} \right)\).
Suy ra: \(A'P = 3\,,\,A'Q = 4,PQ = 5\).
\(J\) là tâm đường tròn nội tiếp tam giác \(A'PQ\). Suy ra \(PQ.\overrightarrow {JA'} + A'P.\overrightarrow {JQ} + A'Q.\overrightarrow {JP} = \overrightarrow 0 \)
\( \Leftrightarrow 5\overrightarrow {JA'} + 3\overrightarrow {JQ} + 4\overrightarrow {JP} = \overrightarrow 0 \Rightarrow J\left( {1;1;0} \right)\).
Vậy \(a - b + c = 1 - 1 + 0 = 0\).
d) Đúng. Giả sử: \(N\left( {a;b;c} \right)\).
Ta có \[\widehat {ANB'} = \widehat {B'ND'} = \widehat {D'NA} = 90^\circ \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AN} .\overrightarrow {B'N} = 0\\\overrightarrow {D'N} .\overrightarrow {B'N} = 0\\\overrightarrow {AN} .\overrightarrow {D'N} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a\left( {a - 1} \right) + {b^2} + c\left( {c - 1} \right) = 0\\a\left( {a - 1} \right) + b\left( {b - 1} \right) + {c^2} = 0\\{a^2} + b\left( {b - 1} \right) + c\left( {c - 1} \right) = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = b = c = 0\\a = b = c = \frac{2}{3}\end{array} \right.\]. Vậy có hai điểm \(N\) thoả mãn điều kiện.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.