Câu hỏi:

04/10/2025 26 Lưu

Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + \ldots + \frac{1}{{n(n + 1)}}\). Khi đó:

a) Số hạng \({u_1} = \frac{1}{2}\)

b) Số hạng \({u_3} = \frac{3}{4}\)

c) \(\frac{{10}}{{11}}\) là số hạng thứ 11 của dãy số

d) \({u_{2023}} + {u_{2024}} > 2\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Sai

Ta có: \(\left\{ \begin{array}{l}\frac{1}{{1.2}} = \frac{1}{1} - \frac{1}{2}\\\frac{1}{{2.3}} = \frac{1}{2} - \frac{1}{3}\\\frac{1}{{3.4}} = \frac{1}{3} - \frac{1}{4}\\...................\\\frac{1}{{n(n + 1)}} = \frac{1}{n} - \frac{1}{{n + 1}}\end{array} \right.\)

Suy ra: \({u_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} +  \ldots  + \frac{1}{{n(n + 1)}}\)

\( = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} +  \ldots  - \frac{1}{n} + \frac{1}{n} - \frac{1}{{n + 1}} = 1 - \frac{1}{{n + 1}} = \frac{n}{{n + 1}}.\)

Vậy số hạng tổng quát của dãy số là: \({u_n} = \frac{n}{{n + 1}}\).

a) Số hạng \({u_1} = \frac{1}{2}\)

b) Số hạng \({u_3} = \frac{3}{4}\)

c) \(\frac{{10}}{{11}}\) là số hạng thứ 10 của dãy số

d) \({u_{2023}} + {u_{2024}} < 2\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

Sau 1 tháng, số tiền bà Hoa nhận được là: \({T_1} = 200{\left( {1 + \frac{{0,05}}{{12}}} \right)^1} \approx 200,83\) (triệu đồng)

Sau 2 tháng, số tiền bà nhận được là: \({T_2} = 200{\left( {1 + \frac{{0,05}}{{12}}} \right)^2} \approx 201,67\) (triệu đồng);

Sau 14 tháng, số tiền bà nhận được là: \({T_{14}} = 200{\left( {1 + \frac{{0,05}}{{12}}} \right)^{14}} \approx 211,99\) (triệu đồng).

Sau 17 tháng, số tiền bà nhận được là: \({T_{17}} = 200{\left( {1 + \frac{{0,05}}{{12}}} \right)^{17}} \approx 214,65\) (triệu đồng).

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 Với mọi số nguyên dương \(n\), ta có:

\(\begin{array}{*{20}{l}}{{u_{n + 1}} - {u_n}}&{ = n + 1 + \frac{1}{{n + 1}} - \left( {n + \frac{1}{n}} \right)}\\{}&{ = 1 - \frac{1}{{(n + 1)n}} = \frac{{(n + 1)n - 1}}{{(n + 1)n}} > 0({\rm{v\`i }}(n + 1)n > 1,\forall n \ge 1).}\end{array}\)

Suy ra \({u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\). Vì vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

Mặt khác, áp dụng bất đẳng thức Cô-si cho hai số dương \(n,\frac{1}{n}\), ta được:

\(n + \frac{1}{n} \ge 2\sqrt {n \cdot \frac{1}{n}} = 2{\rm{ hay }}{u_n} \ge 2,\forall n \in {\mathbb{N}^*}.\)

Vì vậy dãy số đã cho bị chặn dưới.

Câu 3

A. Dãy số \[\left( {{u_n}} \right)\] là một dãy số giảm.              
B. Dãy số \[\left( {{u_n}} \right)\] là một dãy số tăng.             
C. Số hạng thứ \[n + 1\] của dãy là \[{u_{n + 1}} = \sin \frac{\pi }{{n + 1}}\].              
D. Dãy số \[\left( {{u_n}} \right)\] là dãy số không bị chặn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP