Cho cấp số cộng (un) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{u_2} - {u_3} + {u_5} = 10}\\{{u_4} + {u_6} = 26}\end{array}} \right.\)
a) Số hạng đầu của dãy số là \({u_1} = 1\)
b) Công sai của cấp số cộng là \(d = 2\)
c) Số hạng thứ 5 của dãy số là \(13\)
d) Tổng \(S = {u_5} + {u_7} + \ldots + {u_{2011}} = 4028057\)
Cho cấp số cộng (un) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{u_2} - {u_3} + {u_5} = 10}\\{{u_4} + {u_6} = 26}\end{array}} \right.\)
a) Số hạng đầu của dãy số là \({u_1} = 1\)
b) Công sai của cấp số cộng là \(d = 2\)
c) Số hạng thứ 5 của dãy số là \(13\)
d) Tổng \(S = {u_5} + {u_7} + \ldots + {u_{2011}} = 4028057\)
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương II (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) b) c) Ta có: \(\left\{ \begin{array}{l}{u_1} + d - ({u_1} + 2d) + {u_1} + 4d = 10\\{u_1} + 3d + {u_1} + 5d = 26\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 4d = 13\end{array} \right.\)
\( \Leftrightarrow {u_1} = 1,d = 3\);\({u_5} = {u_1} + 4d = 1 + 12 = 13\)
d) Ta có \({u_5},{u_7},...,{u_{2011}}\) lập thành CSC với công sai \(d = 6\) và có 1003 số hạng nên \(S = \frac{{1003}}{2}\left( {2{u_5} + 1002.6} \right) = 3028057\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \({u_n} = \frac{{167}}{{84}} \Leftrightarrow \frac{{2n + 1}}{{n + 2}} = \frac{{167}}{{84}} \Leftrightarrow 84(2n + 1) = 167(n + 2)\)\( \Leftrightarrow n = 250\).
Vậy \(\frac{{167}}{{84}}\) là số hạng thứ 250 của dãy số \(({u_n})\).
Câu 2
Lời giải
Chọn B
Ta có: \[{u_n} = {u_1} + \left( {n - 1} \right)d\]\[ = 3 + 7\left( {n - 1} \right)\]\[ = 7n - 4\]; \({u_n} > 2018\)\( \Leftrightarrow 7n - 4 > 2018\)\( \Leftrightarrow n > \frac{{2022}}{7}\)
Vậy \(n = 289\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.