Câu hỏi:

05/10/2025 17 Lưu

Cho cấp số cộng (un) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{u_2} - {u_3} + {u_5} = 10}\\{{u_4} + {u_6} = 26}\end{array}} \right.\)

a) Số hạng đầu của dãy số là \({u_1} = 1\)   

b) Công sai của cấp số cộng là \(d = 2\)        

c) Số hạng thứ 5 của dãy số là \(13\) 

d) Tổng \(S = {u_5} + {u_7} + \ldots + {u_{2011}} = 4028057\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Sai

 

a) b) c) Ta có: \(\left\{ \begin{array}{l}{u_1} + d - ({u_1} + 2d) + {u_1} + 4d = 10\\{u_1} + 3d + {u_1} + 5d = 26\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 4d = 13\end{array} \right.\)

\( \Leftrightarrow {u_1} = 1,d = 3\);\({u_5} = {u_1} + 4d = 1 + 12 = 13\)

d) Ta có \({u_5},{u_7},...,{u_{2011}}\) lập thành CSC với công sai \(d = 6\) và có 1003 số hạng nên \(S = \frac{{1003}}{2}\left( {2{u_5} + 1002.6} \right) = 3028057\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử \({u_n} = \frac{{167}}{{84}} \Leftrightarrow \frac{{2n + 1}}{{n + 2}} = \frac{{167}}{{84}} \Leftrightarrow 84(2n + 1) = 167(n + 2)\)\( \Leftrightarrow n = 250\).

Vậy \(\frac{{167}}{{84}}\) là số hạng thứ 250 của dãy số \(({u_n})\).

Lời giải

Chọn B

Ta có: \[{u_n} = {u_1} + \left( {n - 1} \right)d\]\[ = 3 + 7\left( {n - 1} \right)\]\[ = 7n - 4\]; \({u_n} > 2018\)\( \Leftrightarrow 7n - 4 > 2018\)\( \Leftrightarrow n > \frac{{2022}}{7}\)

Vậy \(n = 289\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Bị chặn trên bởi 1.                                
B. Giảm.                         
C. Bị chặn dưới bởi 2.                               
D. Tăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP