Câu hỏi:

05/10/2025 9 Lưu

Ghi lại tốc độ bóng trong 200 lần giao bóng của một vận động viên môn quần vợt cho kết quả như bảng bên.

 Tốc độ \(v(\;km/h)\)

 Số lần

 \(150 \le v < 155\)

 18

 \(155 \le v < 160\)

 28

 \(160 \le v < 165\)

 35

 \(165 \le v < 170\)

 43

 \(170 \le v < 175\)

 41

 \(175 \le v < 180\)

 35

Tính trung vị của mẫu số liệu ghép nhóm này.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu là \(n = 200\).

Gọi \({x_1},{x_2}, \ldots ,{x_{200}}\) là tốc độ giao bóng của vận động viên trong 20 lần giao bóng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là \(\frac{{{x_{100}} + {x_{101}}}}{2}\). Do 2 giá trị \({x_{100}},{x_{101}}\) thuộc nhóm \([165;170)\) (vì \(18 + 28 + 35 + 43 = 124)\) nên nhóm này chứa trung vị. Do đó, \(p = 4;{a_4} = 165;{m_4} = 43;\) \({m_1} + {m_2} + {m_3} = 18 + 28 + 35 = 81;{a_5} - {a_4} = 170 - 165 = 5\) và ta có

\({M_e} = 165 + \frac{{\frac{{200}}{2} - 81}}{{43}} \cdot 5 \approx 167,21\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

 

Số lần gặp sự cố là số nguyên nên ta có thể sử dụng bảng tần số ghép nhóm sau:

Số lần gặp sự cố

\([0,5;2,5)\)

\([2,5;4,5)\)

\([4,5;6,5)\)

\([6,5;8,5)\)

\([8,5;10,5)\)

Số xe

17

33

25

20

5

Cỡ mẫu của mẫu số liệu là \(n = 100\).

Gọi \({x_1},{x_2},{x_3}, \ldots ,{x_{100}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Trung vị của của mẫu số liệu là \(\frac{{{x_{50}} + {x_{51}}}}{2}\) với \({x_{50}} \in [2,5;4,5),{x_{51}} \in [4,5;6,5)\).

Suy ra tứ phân vị thứ hai cũng là trung vị của mẫu số liệu ghép nhóm là

\({Q_2} = 4,5.{\rm{ }}\)Xét nửa mẫu số liệu bên trái \({x_1},{x_2},{x_3}, \ldots ,{x_{50}}\) có trung vị \(\frac{{{x_{25}} + {x_{26}}}}{2} \in [2,5;4,5)\).

Ta có: \({n_m} = 33;C = 17;{u_{m + 1}} = 4,5;{u_m} = 2,5\).

Vì vậy, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 2,5 + \frac{{\frac{{100}}{4} - 17}}{{33}}(4,5 - 2,5) = \frac{{197}}{{66}} \approx 2,98\)

Xét nửa mẫu số liệu bên phải \({x_{51}},{x_{52}}, \ldots ,{x_{100}}\) có trung vị

\(\frac{{{x_{75}} + {x_{76}}}}{2}{\rm{ v?i }}{x_{75}} \in [4,5;6,5),{x_{76}} \in [6,5;8,5)\)nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm \({Q_3} = 6,5\)

Vậy các tứ phân vị của mẫu số liệu ghép nhóm là:

\({Q_1} \approx 2,98;{Q_2} = 4,5;{Q_3} = 6,5.{\rm{ }}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \([2;3,5)\).             
B. \([3,5;5)\).           
C. \([5;6,5)\).                  
D. \([6,5;8)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[5\].                      
B. \[3\].                    
C. \[8\].                           
D. \[10\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP