Khảo sát thời gian xem điện thoại trong một ngày của một số học sinh khối \(12\) thu được mẫu
số liệu ghép nhóm sau

Các khẳng định sau đây đúng hay sai?
a) Tổng số học sinh được khảo sát là \(42\).
b) Mốt của mẫu số liệu lớn hơn \(54\).
c) Khoảng tứ phân vị của mẫu số liệu lớn hơn \(38\).
d) Phương sai của mẫu số liệu nhỏ hơn \(610\).
Khảo sát thời gian xem điện thoại trong một ngày của một số học sinh khối \(12\) thu được mẫu
số liệu ghép nhóm sau
![]()
Các khẳng định sau đây đúng hay sai?
a) Tổng số học sinh được khảo sát là \(42\).
b) Mốt của mẫu số liệu lớn hơn \(54\).
c) Khoảng tứ phân vị của mẫu số liệu lớn hơn \(38\).
d) Phương sai của mẫu số liệu nhỏ hơn \(610\).
Câu hỏi trong đề: Đề kiểm tra Cuối chương 3 (có lời giải) !!
Quảng cáo
Trả lời:
![]()
a) Tổng số học sinh được khảo sát là \(n = 4 + 8 + 12 + 10 + 8 = 42\).
b) Nhóm có tần số lớn nhất là \([40;60)\).
Mốt của mẫu số liệu là
\({M_0} = 40 + \frac{{12 - 8}}{{(12 - 8) + (12 - 10)}} \cdot (60 - 40) \approx 53,3.\)
c) Gọi \({x_1},{x_2}, \ldots ,{x_{42}}\) là thời gian xem điện thoại trong ngày của \(42\) học sinh khối \(12\) và giả sử dãy này đã sắp xếp theo thứ tự tăng dần.
Khi đó tứ phân vị thứ nhất \({Q_1}\) là trung vị của dãy \({x_1}\), \({x_2}\),..., \({x_{21}}\) nên \({Q_1} = {x_{11}}\). Do đó \({Q_1}\) thuộc nhóm \([20;40)\).
Tứ phân vị thứ ba \({Q_3}\) là trung vị của dãy \({x_{22}}\), \({x_{23}}\),..., \({x_{42}}\) nên \({Q_3} = {x_{32}}\). Do đó \({Q_3}\) thuộc nhóm \([60;80)\).
Suy ra \({Q_1} = 20 + \frac{{\frac{{42}}{4} - 4}}{8} \cdot (40 - 20) = 36,25\).
\({Q_3} = 60 + \frac{{\frac{{3 \cdot 42}}{4} - 24}}{{10}} \cdot (80 - 60) = 75\).
Khoảng tứ phân vị của mẫu số liệu là \(\Delta Q = {Q_3} - {Q_1} = 75 - 36,25 = 38,75\).
d) Số trung bình của mẫu số liệu là
\(\bar x = \frac{{4 \cdot 10 + 8 \cdot 30 + 12 \cdot 50 + 10 \cdot 70 + 8 \cdot 90}}{{42}} \approx 54,76.\)
Phương sai của mẫu số liệu là
\({s^2} = \frac{{4 \cdot {{\left( {10 - 54,76} \right)}^2} + 8 \cdot {{\left( {30 - 54,76} \right)}^2} + 12 \cdot {{\left( {50 - 54,76} \right)}^2} + 10 \cdot {{\left( {70 - 54,76} \right)}^2} + 8 \cdot {{\left( {90 - 54,76} \right)}^2}}}{{42}} \approx 605,9.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Một trang trại phân 1000 quả trứng thành 5 loại, tùy theo khối lượng ( đã được làm tròn) của chúng được thống kê bởi bảng dưới đây:
\(\left[ {30;36} \right)\)
\(\left[ {36;42} \right)\)
\(\left[ {42;48} \right)\)
\(\left[ {48;54} \right)\)
\(\left[ {54;\,60} \right)\)
Số trứng
45
190
500
250
15
a) Tần suất của khối lượng trứng \(\left[ {30;36} \right)\)là \(19\% \).
b) Số trung vị của mẫu số liệu là 43.
c) Khoảng biến thiên của mẫu số liệu 39,18.
d) Độ lệch chuẩn của mẫu số liệu là \(\frac{{6\sqrt {17} }}{5}\).
Một trang trại phân 1000 quả trứng thành 5 loại, tùy theo khối lượng ( đã được làm tròn) của chúng được thống kê bởi bảng dưới đây:
|
\(\left[ {30;36} \right)\) |
\(\left[ {36;42} \right)\) |
\(\left[ {42;48} \right)\) |
\(\left[ {48;54} \right)\) |
\(\left[ {54;\,60} \right)\) |
|
|
Số trứng |
45 |
190 |
500 |
250 |
15 |
a) Tần suất của khối lượng trứng \(\left[ {30;36} \right)\)là \(19\% \).
b) Số trung vị của mẫu số liệu là 43.
c) Khoảng biến thiên của mẫu số liệu 39,18.
d) Độ lệch chuẩn của mẫu số liệu là \(\frac{{6\sqrt {17} }}{5}\).
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
a)Tần suất của khối lượng trứng \(\left[ {30;36} \right)\)là \(\frac{{190}}{{1000}}.100 = 19\% \).
b)Nhóm chứa trung vị là nhóm \(\left[ {42;48} \right)\).
\({M_e} = 42 + \frac{{\frac{{1000}}{2} - 235}}{{500}}.\left( {48 - 42} \right) = \frac{{2259}}{{50}}.\)
c)Khoảng biến thiên của mẫu số liệu là: \(60 - 30 = 30\).
d)Ta có bảng sau:
|
Khối lượng ( gam) |
\(\left[ {30;36} \right)\) |
\(\left[ {36;42} \right)\) |
\(\left[ {42;48} \right)\) |
\(\left[ {48;54} \right)\) |
\(\left[ {54;\,60} \right)\) |
|
Số trứng |
45 |
190 |
500 |
250 |
15 |
|
Giá trị đại diện |
33 |
39 |
45 |
51 |
57 |
Phương sai là:
\({s^2} = \frac{{{{33}^2}.45 + {{39}^2}.190 + {{45}^2}.500 + {{51}^2}.250 + {{57}^2}.15}}{{1000}} - {45^2} = 24,48.\)
Vậy độ lệch chuẩn của mẫu số liệu là
\(s = \sqrt {24,48} = \frac{{6\sqrt {17} }}{5}.\)
Câu 2
Lời giải
Chọn D
Tổng số HS: 100
Giá trị trung bình của mẫu số liệu
\(\overline x = \frac{{5.151 + 18.153 + 40.155 + 26.157 + 8.159 + 3.161}}{{100}} = 155,46\)
Khi đó phương sai của mẫu số liệu là:
\(s_x^2 = \frac{{5{{\left( {151 - 155,46} \right)}^2} + 18{{\left( {153 - 155,46} \right)}^2} + 40{{\left( {155 - 155,46} \right)}^2} + 26{{\left( {157 - 155,46} \right)}^2} + 8{{\left( {159 - 155,46} \right)}^2} + 3{{\left( {161 - 155,46} \right)}^2}}}{{100}} = 4,7084\)Vậy \(a + b + c + d + e = 4 + 7 + 0 + 8 + 4 = 23\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
